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A rapid development of the knowledge about vascular endotheliai cell function as an
“endocrine gland” releasing the labile, highly biologically active products, caused
a major reapprisal of our concepts concerning the pathophysiology of our body. The
publication summarizes the present understanding of the involvement of nitric oxide
(NO), endothelins (ETs) and arachidonic acid products in the mechanisms
underlying the regulation of the tonus of vessels supplying blood to the CNS, their
known modulatory and mediatory role in CNS functions such as a development and
memory, peripheral nonadrenergic noncholinergic, or sensory neurotransmission.
The regulation intracellular Ca™ "ion levels as a proposed mechanism for the
neuroprotective, as well as the neurotoxic effect of the described endothelial products
is presented. The supposed therapeutical usefullness of compounds which can
modulate their biosynthesis, substitute their activity, or modify its degradation are

also summarized.
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INTRODUCTION

The rapidly developing knowledge of the function of the vascular
endothelial cells in maintaining the integrity of the vascular wall, patency of
vessels, and fluidity of blood, completely changed the concept of their role in
physiology and pathology of our body. Endothelial cells function is related to
their capacity to synthetize a vast number of substances such as: prostacyclin
(PGI,) and the other arachidonic acid metabolites (1—3), “endothelium
derived relaxing factor” (EDRF) (4), proved to be nitric oxide (NO) (5),
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endothelins (6), activators (t-PA) (7), and inhibitors (PAI) (8) of the plasma
fibrinolytic activity, cytokines (9), adhesion and chemotaxis promoting selectins
and integrins (10—12), growth promoting factors (13), a platelet activating
factor (PAF) (14), a wide range of antioxidant enzymes (15) and others. Most of
these substances released continuously, support the blood/vessel wall
homeostasis and the sufficient blood supply to the tissues.

Thus, hyperoxia, hypoxia or anoxia of tissues (4, 15), tissue damage related
to inflammation, such as oedema and cytotoxicity due to the presence of
activated phagocytic cells (6, 17) are strongly influenced by the biological
efficiency of the endothelium.

The endothelial regulatory system is still not fully understood. Three
components of this system will be reviewed here: EDRF/NO, endothelins, and
some metabolites of arachidonic acid in the aspect of blood supply and the
function of the central nervous system.

EDRF/NO

EDREF identified as nitric oxide (NO) (5), or rather as its free radical (NO)
(17) 1s biosynthesized from L-arginine (L-Arg) by oxidative desimination (18,
19) or perhaps from peptides which contain L-Arg (20). The co-product of this
reaction, citrulline, is further metabolised back to arginine, forming “a half-urea
cycle” (21). (Fig 1) This enzymic process takes place not only in vascular

(carbamyl
Ornithine Phosphate)
Argifiase NO synthase \<

Argini nmltrullme
fumarate Arg'lrmjc:yﬁ;a e
osuccinase Al‘gan' synthetas

succinate

Fig. 1. Metabolism of arginine in the body; “the urea cycle”. NO-synthase (NOS) is forming NO in
the “part-urea cycle”.

endothelium (4, 19), but also in macrophages (22), neutrophils, blood
monocytes (23), mastocytes, hepatocytes, Kupfer cells (24, 25), non-adrenergic
non-cholinergic (NANC) nerve endings (26), and neurons (27, 28).
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Fig. 2. Structural formulae of L-arginine (L-Arg), and some of NOS inhibitors:

N¢-monomethyl-L-arginine (L-NMMA); N-iminoethyl-L-ornithine (L-NIO); N®-nitro-L-arginine

(L-NA); Ne°-nitro-L-arginine methyl ester: (L-NAME); N®amino-L-arginine (L-NAA);
asymmetrical N¢-dimethyl-L-arginine (ADMA).

Some structural analogs of L-Arg (Fig. 2) (22, 23) have been used as the
NO-synthase (NOS) antagonist to study the biochemistry and physiology of
the NOS-NO pathway.

Recently it has become apparent, that there are at least two types of NOS.
One is constitutive, membrane bound (in endothelium) (29), or cytosolic (in
brain), Ca* * /calmodulin dependent, and releases NO in smaller amounts for
short periods of time in response to receptor or physical stimulation (25, 30,
31). NO released by this enzyme acts as the transductive responses mechanism,
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mediating several physiological responses through stimulation of soluble
cytosolic guanylate cyclase, and elevating the cellular c-GMP levels (32, 33).
Acetylcholine, bradykinin, substance P, thrombin, adenosine diphosphate, and
5-hydroxytryptamine, are the best known activators of the NO release, by
constitutive NOS from endothelial cells, elevating intracellular Ca™ *via
receptor mediated increase of inositol 1,4,5-triphosphate and diacylglycerol
levels (25, 30, 31). NO released in this way, plays an important role in
maintaining the basal tonus of the vessel, counteracting the activity of all
endogenous and exogenous vasoconstrictors (25, 30, 34, 35). It has been
recently postulated that the endogenously formed L-Arg metabolite ADMA
(Fig. 2) i1s responsible for the hypertension observed in patients with severe
kidney insufficiency (36) or eclampsia (37).

Intercellular liberation of NO constitutes the common principle of
pharmacological action for glyceryl trinitrate and other organic nitrates
recognized recently as the “NO-donors” (38). In contrast to endogenous, the
generation of NO from exogenous NO-donors is a reductive process that
requires cysteine, glutathione and special enzymes, and takes place in some
cells, for example in the vascular smooth muscle, but not in platelets (39).
Another NO-donor, SIN-1A, the metabolite of molsidomine, releases NO in an
aqueous solution in a non-enzymatic-, pH-, temperature- and time-dependent
manner, causing the relaxation of the vasculature without any signs of
tachyphylaxis (40).

Another biologically potent activity of the NO formed by the constitutive
NOS in endothelium is the inhibition of platelet aggregability, release reaction,
and its adhesion to endothelium and polymorphonuclear leukocytes (PMNs)
(41—44). In the antiplatelet activity EDRF/NO synergises with PGI, on the
basis of accumulation of the intracellular c-GMP and cAMP levels (43, 45). No
synergistic activity in vasodilatory properties of both autacoids has been
demonstrated (46).

NO molecule is short living and decomposes in the aqueous solution to
nitrite and nitrate ions, deprived of the biological activity of nitric oxide. NO is
instantly destroyed by superoxide anions (O;) (47). Oxyhaemoglobin is
a powerful scavenger of NO, methylene blue while inhibiting guanylate cyclase
hinders biological effect of EDRF/NO (48). Superoxide dismutase (SOD)
and inhibitors of c-GMP phosphodiesterase potentiate the biological effects
of NO (47, 48).

Another izoform of NOS is induced after activation of macrophages,
monocytes, neutrophils, fibroblast, endothelial and a number of other cells by
cytokines (TNF-a, IL-1, IF-y or LPS), and once expressed, sythesizes the larger
(comparing to inducible NOS) amounts of NO for long periods of time (25, 30,
31, 49, 50, 51). Furthermore, this enzyme which is cytosolic, Ca* */calmodulin
independent, requires tetrahydrobiopterin as a cofactor and its induction is
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inhibited by corticosteroids and some cytokines (IL-8, IL-10) (52, 53). So far,
the only clearly established role of this NO is as a cytotoxic molecule for
invading microorganisms and tumor cells, thus mediating the so called
nonspecific immunity of our body (25, 54—57). The release of NO via this
enzyme is also included in pathological vasodilatation, observed in septic
shock (58, 59) and an endothelium and tissue damage accompanying the
inflammatory/immune reactions (16, 17). The existence of a human inducible
NOS (iNOS) is strongly suggested by the elevation of nitrate in the plasma and
urine of individuals who have received cytokines (61, 62), or become septic (63).

The cytotoxicity of NO released by iNOS is linked to several processes. NO
binds to all Fe-S enzymes, which results in inhibition of many cell
oxydoreductases and cis-aconitase (64).

NO disruption of ferritin may acount for the Fe release from target cells
incubated with activated macrophages (64). The free Fe may promote lipid
peroxidation (65).

A prominent action of macrophage derived NO on tumor cells is the
inhibition of their synthesis of DNA by inhibition of ribonucleotide reductase
(64). Superoxide anion may be another important target of the toxic activity of
NO. Reaction of O, with NO results in formation of peroxynitrite, which
decays to nitrogen dioxide and hydroxyl radical, considered as the strongest
oxidant in biological systems (17).

The interaction of NO with sulfhydryls has brought the hypothesis that
S-nitrosothiols could be long-living reservoirs of bioactive NO (66). On the
other hand, S-nitrosylation inactivates SH-dependent bacterial dehydrogenases
and nitrosylation of proteins leads to the formation of N-nitrosoamines with
cancerogenic properties (67).

cNOS and iNOS differ also in the susceptibility to inhibition by various
L-Arg analogs, most evident in the relative selectivity of L-NA for cNOS (68).
Also compounds that bind calmodulin, such as calcineurin or trifluoroperazine,
are the only selective inhibitors on cNOS activity known so far (69). The above
mentioned inhibition of the iNOS induction by corticosteroids (52), may add
one more mechanism to the understanding of an anti-inflammatory activity of
these compounds.

In the central nervous system the biological activity of NO is not restricted
to the vessels, but the discoveries of the last five years have demonstrated the
function of NO as a messenger and a synaptic plasticity modulator in CNS and
in peripheral NANC and sensory neurons (21, 25, 28, 31). The participation of
NO in neurotoxicity and opioid dependence has also been suggested (70, 71).

Neurotransmission by agents such as ACh, glutamate, and glycine has long
been known to be associated with calcium requiring elevation of c-GMP levels
in the brain, and particularly in cerebellum (72). In 1982 L-Arg was identified
as the endogenous activator of the soluble guanylate cyclase in neuroblastoma
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cells (73). These observations together with the discovery of the L-Arg/NO
pathway in vascular endothelium led to the concept of the existence of such
a pathway in the central nervous system. Knowles et al., demonstrated that
addition of L-Arg to rat synaptosomal cytosol in the presence of NADPH,
resulted in the formation of NO and cytrulline and was accompanied by the
stimulation of soluble guanylate cyclase (74). This enzyme, calcium/calmodullin
dependent, is inactive in a resting (80 nM) concentrations of Ca™" in
synaptosomes (25) whereas it was fully active at Ca™ " concentrations of
400 nM (74). Interestingly enough, physiological Ca™ ™ levels, which are
essential for the action of the brain NOS, were found to inhibit the brain
soluble guanylate cyclase (74). This could represent a control mechanism
whereby guanylate cyclase is not activated in those CNS cells stimulated to
produce NO, but only in the effector cells (74). The brain, but not endothelial
cNOS contains flavins (FAD and FMN), and thus may act as a cytochrome
P-450 reductase (75). The brain NOS is competitively inhibited by L-MNNA,
L-NA and L-NIO, but not by L-canavinine (76). Histoimmunochemical studies
using antibodies to the cNOS (28) followed by the measurement of the NOS
activity in the cytosolic fraction of different rat brain regions (77) have showed
that the highest concentration of NOS was present in the cerebellum, followed
by the hypothalamus and mildbrain, striatum, and hipocampus, with the
lowest activity found in the medulla oblongata. The granule cells have been
suggested to be the principal neurons in the cerebellum, which release NO in
response to exogenous excitatory aminoacid (NMDA) receptors (28, 78). An
increased activity in the excitatory pathways has long been known to cause
increased levels of cGMP particularly in cerebellar cortex (21, 78).

The neurotransmitter released in all of the main excitatory synapses in the
cerebellum acts through excitatory aminoacid receptors, and is probably
glutamate (21). There are two categories of recognised excitatory aminoacid
receptors: the ones connected with ion channel (ionotropic receptors), and
those coupled to G proteins (metabotropic receptors). The ionotropic receptors
are subdivided into three types, according to their selective agonists: NMDA,
AMPA (quisqualate), or kainate. These types of ionotropic receptors are
habituary termed NMDA and others are referred to as: non-NMDA receptors
(21). In developing rat cerebellum NMDA receptors mediate most, if not all of
the cGMP response to glutamate (79). In adult mice “basal” cerebellar, as well
as after pharmacological intervention increased cGMP levels are reduced by
the selective NMDA agonists (80). Up to now it has not been proved that either
exogenous glutamate or the endogenous neurotransmitter elicits cGMP
accumulation through non-NMDA receptors. In fact, glutamate has been
shown to be a potent inhibitor of the elevations in cGMP that are induced by
the exogenous non-NMDA agonist — kainate (81). This observation, with the
evidence that the accumulation of cGMP levels is observed not in neurones
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that are stimulated by the glutamate receptor agonist, but in surrounding cells
only, raised the concept of existence of the mobile, permeable molecule
mediating the intracellular communication (79, 81, 82). Nitric oxide with its
lipophylic properties, and the short-lasting activity was a good candidate for
such an action. The activation of NMDA receptors raises the cytosolic Ca™**
levels due to the receptor-operated ion channels. The same Ca™ " influx is
believed to mediate the brain cNOS activity and to initiate many physiological
and pathological effects of NMDA receptor activation (21).

Brain NOS is inhibited by the L-Arg metabolites. This effect can be
reversed in vitro by the supplementation of the exogenous L-Arg (21).
Interestingly enough, in the immature cerebellum, the inhibition curve for
L-NA (but not L-NMMA) shows two components (83). One component is
evident for very low (IC,, = 6nM) concentration, but with maturation, this
component is lost, leaving the other component (IC5, = 600nM) observable in
the‘adult. This suggests the existence of two NO-synthases, which are
différently sensitive to L-NA, (but not to L-NMMA), and that one of them
exists only during the development period (21,83).

Cerebellum is that part of the brain where the NO synthase is concentrated.
Cerebellum contains two main neurone types: the large Purkinje cells, and
small but numerous granule cells. The granule cells are a major site of NMDA
receptor-mediated NO formation, and of ¢cGMP accumulation in the
developing tissue (84, 77, 78). NO genei .ted presynaptically in granule cells
appears to have at least two potential targets located in postsynaptic
membranes. One is in astrocytes, and the other one in the Bergman glial cell
bodies (21). The regional distribution of NOS does not entirely match that of
NMDA receptors, and for example, neurones in the deep cerebellar nuclei
express many NMDA receptors, but NMDA is unable to induce measurable
increases in cGMP levels there (82). Cells in these nuclei do however, respond
to the exogenous NO-donors (85), suggesting a different stimulus for NO
formation, or the inhibition of guanylate cyclase by accumulating intracellular
Ca™ ™", as mentioned above (74).

Both the localisation of NOS as well as the effector cells reactivity and its
relation to physio- and pathological meaning need further investigations. As it
is presently understood, NO is the one of the supposed candidates for
mediating (via NMDA receptor) the processes of memory and learning (21). It
could be involved in triggering the long-lasting changes in synaptic strength cn
which certain forms of learning are believed to depend (21). The other
mechanism the NMDA-activity dependent reorganisation of the afferent fibers,
with respect to the target neurones during brain maturation and development,
is also suggested to be mediated by NO (86). The astrocytes activation has been

demonstrated to influence the plasticity of neuronal synaptic connections (87)
which may be related to the changes in the membrane ion channels, which are
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dependent on the cGMP level. This effect is also supposed to be mediated by
NO in CNS (21). Moreover, the endogenously formed inhibitors of NOS such
as LNMMA, ADMA and D’MA have been recently isolated from the bovine
brain (88).

The L-Arg/NO pathway may also play a role in the pathology of the
central nervous system. It has been demonstrated that an excessive NMDA
receptor activation, with the consequent increase in intracellular Ca™ ™
accumulation, contributes to glutamate neurotoxicity by an enhanced
production of NO (89, 90). Thus, it appears, that the biological responses to
NO could be biphasic, as it is observed in glutamate and related excitatory
amino acids: that is, physiological or pathological effects may occur. An
activation of NMDA receptor can influence neuronal development,
differentiation and plasticity (21, 91—93) via NO-stimulated cGMP
accumulation, as it has been suggested for rodent cerebellar tissue (21, 78, 79,
94). The observations that NMDA and kainate enhance the viability of
cerebellar granule neurons grown under low potassium conditions (90) confirm
the trophic effect of excitatory amino acids on cerebellar granular cells (95, 96).
However, Boje and Skolnick demonstrated that the exogenous NO-donor,
SNAP (S-nitroso-N-acetylpenicillamine) was toxic for the cultured cerebellar
granule neurons (90). This toxicity was enhanced by SOD, which protects NO,
and abolished in the presence of oxyhemoglobin, which scavenges NO,
pointing to toxic effect on nitric oxide itself. The NO-mediated neurotoxicity
after glutamate was soon after that (97). It was also suggested that the
stimulation of NMDA receptors induced by ischaemic insult, could raise
cytosolic calc.um followed by the overproduction of NO (21). However,
NMDA antagonists exert few, if any, protective effects of stratial infarctus
induced by occlusion of middle cerebral artery (98), the inhibition of NO
biosynthesis by L-NAME, or L-NA which protected the rat brain against the
focal cerebral ischaemia (99, 100). These observations may suggest that the NO
production by ischaemic insult may be at least in part unrelated to the NMDA
receptor overstimulation. They also suggest that the inhibition of the CNS
NOS is beneficial for the treatment of the cerebral ischaemia.

Within the discrete pattern of NO-synthesizing neurons in brain, NOS was
found to colocalize with the cholinergic brain stem-thalamic system, which 1s
thought to regulate the state-dependent activity of the thalamocortical circuit
(28). It was demonstrated that the release of NO onto thalamocortical neurons
results in an alteration in voltage dependence of the hyperpolarization-
activated cation conductance, probably mediated via ¢cGMP (101). The
administration of L-Arg into the lateral cerebral ventricle in rats resulted in
behavioural stimulation, electrocortical desynchronization with occasional
isolated high voltage spikes, but not motor seizures (102). The simultaneous
administration of low doses of NMDA resulted in behavioural and
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electrocortical seizures, and these effects were prevented by pretreatment
of the rats with L-NA (102). Thus, the L-Arg/NO pathway may also participate
in the pathomechanism of epileptic seizures associated with brain insult.
Zhang and co-workers (103) demonstrated that hyperoxia induced convulsions
in rats which are associated with the decrease in cerebral norepinephrine
and GABA content, and accumulation of L-Arg. Pretreatment of rats with
pargyline (an MAO inhibitor), or L-NA, completely protected from seizures,
inhibited the accumulation of L-Arg, and depletion of epinephrine, but not
of GABA. Moreover, Oury and co-workers even suggested, that the superoxide
anion formed during O, toxicity may have some protective activity via
inactivation of NO overproduced in brain during hyperoxia (104). Comparing
to normal mice, they demonstrated that, the increased mortality during
the 25 minut exposure of the transgenic animal, overexpressing human
extracellular SOD, to hyperbaric oxygen can be prevented by the pretreatment
with L-NA (104). Thus, the oxygen toxicity may be also related to the
overproduction of NO in CNS.

The central and peripheral neurotoxicity may be also mediated by
biologically active substances released not only by cells constitutively present
in the neural tissue, but also by the migrating, phagocytizing cells. Hartung
et al. (105) have recently reviewed the role of nitric oxide, oxygen radicals,
arachidonic acid metabolites, proteases in inflammatory demyelination of
neurons, mediated by cytokines (IL-1, IF N-y TNF-a), as well as complement
activated astrocytes, microglial cells and macrophages. Microglial cells
transformation to phagocytosing brain macrophages takes place in neuronal
and/or terminal degeneration after the nerve lesion (106), and the induction of
NOS by phagocytosis, and the above mentioned cytokines, has recently been
demonstrated in cloned murine microglial cells (107).

In the peripheral nervous system the postulated role of NO as
a neurotransmitter released by “non-adrenergic, non-cholinergic” (NANC)
nerves (108 —110) has been confirmed by the reaction of anti-cNOS antibody
with neurons in the myenteric plexus in the intestine and medulla of the
adrenal glands (111). The activation of these neurons leads to the inhibition of
the tonus of the smooth muscle in the gastrointestinal tract (esophagus,
stomach, duodenum, ileocolonic junction) where it mediates adaptive
relaxation (108 —110), penile corpus cavernosum, (108 —111), airways (109,
112), pulmonary arteries (113) mediated by the release of NO, and the
accumulation of cGMP in effector smooth muscle cells. However extensively
studied, there is no clear-cut mechanism explaining how the initiation of
NANC activation is induced. Electrical stimulation of the vagal NANC nerves
leads to the profund relaxation of the esophagus, stomach fundus and corpus

promoting the propulsion of food (108, 109). The rise in intragastric pressure
leads to a sudden relaxation of the stomach fundus, which prevents the further
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increase in the lumen pressure, arguing for the local inhibitory reflex activated
by the extension of the stomach (110). Ganglionic nicotinic transmission
leading to the NO-mediated relaxation of the stomach and guinea-pig trachea
for the local sensory reflex was postulated (110, 112).

Interestingly enough, all the known activators of NO release from
endothelium such as Substance P, VIP, CGRP, 5-HT and neuropeptide-Y
containing neurons have been immunolocalized in the myenteric plexus (114),
that suggests the participation of these mediators in the local reflexes with the
final activation of NO release from neuronal or from the effector tissue. The
resistance of pressure induced gastric relaxation (110), or the nicotinic receptor
activated relaxation of guinea-pig trachea (112) to hexametonium can also be
explained by an axon reflex (115), mediated by NO released from sensory nerves.
In rabbits, a nociceptive effect of acetylcholine has been shown to be mediated
through nicotinic receptors present on perivascular sensory nerve endings (116).

In men, iontophoresed ACh can stimulate peripheral nociceptive C-fibres to
produce flare (neurogenic vasodilatation) which is abolished by an anaesthetic,
and is absent in denervated skin (117, 118). Neurogenic inflammation involves
vasodilatation, plasma protein extravasation and oedema. It can be also
elicited by antidromic stimulation of the unmyelinated C-fibres of sensory
nerves by topical application of chemical irritants, such as capsaicin, mustard
oil, xylene (119, 120). Pretreatment of rats with high doses of capsaicin, which
selectively destroys C-fibres (121), completely prevents the ability to elicit
neurogenic inflammation by electrical stimulation (122). The capsaicin-sensitive
somatic neurones include the polymodal nociceptors, which are sensitive to
a variety of noxious chemical, thermal and mechanical stimuli, mediating
autonomic reflexes (123, 124). Lembeck was the first who suggested that
Substance P is the primary afferent neurotransmitter of inflammation (120).
Subsequent studies demonstrated the accuracy of this proposal. Substance P
along with neurokinin A, and CGRP (125—127) was found in C-fibres sensory
nerves, indicating that it may play a role in neurogenic inflammation. Both
symptoms: vasodilatation and oedema, of neurogenic inflammation, are
attenuated by pretreatment with L-NA and L-NMMA, but not by their
D-stereoisomers (127, 128). These results may add to the understanding of the
hypothesis concerning the participation of NO in the control of basal tonus of
vasculature (25, 31, 35, 36). It well may be that NO controlling the tonus is
released by activation of the local sensory reflex arches. The afferent sensory
neurones containing the above tachykinins as well as bradykinin, 5-HT,
histamine, all known mediators of NO release from endothelium, were found to
control vascular tonus and permeability in numerous tissues other than the
skin, such as coronary vasculature (129), hepatic (130), airway and nasal
mucosa (131, 132), meninges (133), eyes (134), joints (135 —137), urinary bladder
(135, 136), gastrointestinal tract (137, 138). It well can be that functionary
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hyperaemia (139), as well as reactive hyperaemia (140) observed in working
tissues or in tissues during reperfusion following short, seconds-lasting
ischaemia, could be mediated by NO released from sensory nerves or from
endothelium activated by tachykines, released from these nerves on the way of
the local reflex. The local biochemical (pH, pO,) and physical (pressure, stretch)
properties, are good candidates for the initiation of such a reflex.

It is interesting that the neurogenic inflammation can be inhibited at the
presynaptic level with opioid receptor agonists (141). Ferreira and co-workers
(142 —144) demonstrated that the local analgesic effect of substances such as
ACh, or morphine is mediated via stimulation of the L-Arg/NO/c-GMP
pathway. They also showed, that NO-donors, such as NaNP, or Sin-1
antagonized carrageenin and PGE, hyperalgesia in rats, and applied iocally,
caused analgesia and the reduction of the arm volume in patients with
thrombophlebitis (144). The potentiation of the antinociceptive effect of
B-endorphin in mice by L-Arg was also reported (145).

On the other hand, the pretreatment of animals with the NOS inhibitor:
L-NMMA, reduced the carageenin-induced oedema in rat paw (146), and the

L-NA administered intrathecally enhanced morphine nociception in the rat
spinal cord (147) (Fig. 3). Thus, the results concerning the role of NO in
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Fig. 3. The suggested participation of L-Arg and NO in central and peripheral antinociception.
(according to A. Kawabata et al. 1993).

peripherally mediated nociception are not consistent. A histochemical study
has suggested that NO may act as a messenger from sensory neurons in dorsal
root ganglia to their satellite cells, where c-GMP levels increase in response to
NO (148). Thus, it has been suggested that L-Arg may act as a nociceptive
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promoter through the enhancement in NO production at spinal and
supraspinal levels (147 —149). Thus, it is obvious that NO-pathway may be
differently involved in nociceptive processes at the level of the pheripheral and
central nervous system.

It 1s also suggested, that L-Arg itself plays a dual role in the nociceptive
processing in brain, being nociceptive via the NO/cGMP pathway, and
antinociceptive via the kyotorphin-Met-enkephalin pathway (149, 150) (Fig. 3).
Kyotorphin (L-tyrosyl-L-arginine), an endogenous peptide isolated from
bovine brain, produces naloxone-reversible antinociception by enhancing
Met-enkephalin release, and is localized in synaptosomes of CNS (151). It is
suggested that L-Arg acts as a precursor for the biosynthesis of kyotorphin,
that results in antinociception (147, 148). The therapeutical significance of
L-Arg 1s also supported by clinical findings, presenting that intravenous
infusion of L-Arg, produces potent analgesia in the naloxone-reversible manner
in patients with various types of chronic pain (152, 153).

The participation of NO in specificity of the regulation of the
cerebrovascular tonus was also reported (154). On the contrary to the
coronary, and mesentery vascular beds, the relaxation caused by transmural
neural stimulation of basilar, middle cerebral and posterior cerebral arteries of
dogs were suppressed by L-NA. This suppresion was reversed in the presence
of exogenous L-Arg (154, 155). Thus, NO may play a crucial role in the genesis
of neurally induced vasodilatation of cerebral arteries, such as migraine.

Hypoxia increased the c-GMP level in main rabbit cerebral arteries, and
increased the cerebral blood flow (156). This effect is prevented in the presence
of methylene blue, the known inhibitor of guanylate cyclase. Exogenous L-Arg
dilates rat pial arterioles by NO-dependent mechanisms, and increases blood
flow during focal cerebral ischaemia (157). Thus, L-Arg or NO-donors were
suggested to be useful for the increase of cerebral blood flow during ischaemic
stroke in men (157).

Endothelins and the nervous system

In March 1988 Yanagisawa and co-workers (6) described an endothelium
derived vasoconstrictor peptide, endothelin, with the regional homologies to
a group of neurotoxins, and suggested its action as an endogenous modulator
of voltage-dependent ion channels. Subsequent studies resulted in the
identification of several endothelin (ET) peptide isoforms and the genes that
encode them. The ETs (Fig. 4) include three isopeptides ET-1, ET-2 and ET-3.
They all contain 21 aminoacids and two disulfide bonds. ET-1 differs from
ET-2 by two and from ET-3 by six amino acids, and each peptide is derived
from a seperate gene (158). In humans, ET-1 m-RNA codes for a 212-amino
acid precursor (prepro-ET-1), which undergoes proteolytic cleavage to
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Fig. 4. Amino acid sequences of endothelins and sarafotoxin. The main sequence ET-1 is presented,
when the differences in substituing amino acids are consecutively presented for ET-2, ET-3 and
sarafotoxin.
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a 38-aminoacid residue (pro- or “big” ET-1), and subsequently, through the
action of a metalloprotease (ET-converting enzyme) to ET-1 (159). The ETs are
structurally and functionally homologous to another mammalian peptides:
vasoactive intestinal contractor (160) and to sarafotoxins found in the venom of
the snake and burrowing asp, Atractaspis engaddensis (161). ET-1 is the only
ET produced by human and porcine endothelial cells, while both ET-1 and
ET-3 have been identified in neural tissue such as brain, spinal cord and dorsal
root ganglia (162, 163). Ischaemia, thrombin, transforming growth factor-p,
norepinephrine, phorbol esters and calcium ionophore A23187, were reported
to activate release of ETs from endothelium (164, 165). In experimental animals
ET-1 has a greater vasoconstrictor potency than any other known vasoactive
hormone causing the long-lasting contraction of the vascular smooth muscle
(164, 166, 167).

Although three peptides induce the potent vasoconstriction in vitro, the
transient depressor response followed by a sustained pressor response in vivo is
observed. ET-1 is the most active vasoconstrictor, while ET-3 is the most
potent vasodilator (158, 168, 169). In addition to that, endothelins have been
reported to produce a wide spectrum of biological effects, such as: stimulation
of proliferation of vascular smooth muscle cells and fibroblasts (170),
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contraction of human airway and intestinal smooth muscle (171, 172), positive
inotropic and chronotropic effects on the myocardium (173), release of
eicosanoids from vascular beds (172), stimulation of atrial natriuretic peptide
(174). They stimulate the vasopressin and oxitocine release from hypothalamus
(175) and modulate norepinephrine release from sympathetic terminals (176).
ET-1 is equipotent with ET-3 in releasing EDRF/NO from vascular
endothelium (172, 177, 178), and the anti-platelet and fibrinolytic properties of
ET-3 in vivo, may be partially related to this effect (179). Radioimmunoassay
has demonstrated low plasma levels of ET-1 (ca 1 pg/ml for healthy volunteers).
It increased (up to 20 pg/ml) in acute stages of renal failure (180), endotoxic
shock (181), myocardial infarction, pulmonary hypertension (182, 183) and
uraemia (184). During acute asthmatic episodes, ET-1 levels rise in bronchial
exudates (185).

ETs affect target cells by binding to receptors on the cell surface. Genes
encoding multiple ET receptors have been cloned and expressed, revealing
both ET-1 preferring (ET,) and isopeptide-nonselective (ETjy) receptor
subtypes, and the corresponding mRNAs have been detected also in
mammalian brain (186 — 188). Activation of receptors by ETs in smooth muscle
as well as in cultured astrocytes neublastoma and C6 glioma cells, stimulates
Ca™ " influx and intracellular Ca®™ ™ mobilisation, activates phospholipases
A, and C, protein kinase C, activates Na™-H " exchange, induces transcription
of the c-fos protooncogene, and inhibits Na™-K "-ATP-ase (189—192). In
contrast, ET-1 does not stimulate Ca** influx or alter [Ca™ "], levels in
rat brain synaptosomes (193), indicating, that neuronal ET receptors involved
in Ca™ * signalling may be localized preferentially with postsynaptic elements.
It is suggested that in neuroblastoma x glioma NG108-15 cells responses
to ET-1 involve receptor-mediated Ca** influx and mobilisation of Ca™* ™"
from inositol phosphate-sensitive intracellular stores, while plateau responses
result from Ca™ " influx through dihydropyridine-sensitive voltage-gated
channels (175, 194).

ETs were found to modify some of neuronal functions. ET-1 applied locally
into area postrema of rats caused an increase, followed by a decrease in mean
arterial blood pressure (195). ET-1 inhibits the release of norepinephrine from
sympathetic neurons (196), and stimulates the release of acetylcholine from
parasympathetic neurons (197), vasopressin from hypothalamus (198) and
aspartate from cerebellar granule cells (199).

ETs seem to play an important role in the pathology of CNS connected
with the functional effects on cerebrovascular and neural tissues. ETs induce
longlasting constrictions of mammalian cerebral arteries and arterioles
(200 —202), including human vertebral, basilar, and middle cerebral arteries
(203) as it was shown in vitro, and pial arterioles and basilar artery in vivo (204).
It was demonstrated that ETs being large molecules, did not cross the
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blood/brain barrier, and thus, they may act from the adventital-side of cerebral
blood vessels (204, 204). This suggestion is confirmed by observations, that
intercisternal, but not inraarterial application of ET-1 decreases the blood flow
in canine basilar arteries (204), and argues for the action of the locally
biosynthesized ETs in the CNS pathology.

Ischaemia was primarily found to activate ETs production by porcine
aortic endothelial cells (6), coronary artery endothelium in culture (206),
isolated mesenteric arteries (207), and the increase of the plasma ETs-levels
were reported during myocardial infarction (208) and hypertension (209).
Antibodies to ET-1 have been reported to attenuate the experimental
myocardial (210), and renal (211) ischaemia. On the other hand, carbon dioxide
induced hypoxia did not activate ETs release from cerebral vessel endothelial
cells in culture (212), and unlike the patients with subarachnoid haemorrhage,
the ETs-like radioimmunoactive material was not detected in cerebrospinal
fluid (CSF) (213, 214). Even the clinical significance of the reported elevations of
plasma (215, 216), and CSF (215, 216) ETs-like material following subarachnoid
haemorrhage is unclear, since no correlation between the ETs level in CSF and
the incidence of vasospasm was found (216). Vasospasm and ischaemic deficits
in hemorrhage are commonly related to the subarachnoid blood (217). ETs
might promote ischaemic neuronal injury by the high input of Ca™* ions, and
indirectly, by stimulating the release of excitotoxic amino acids (199), while
vasospasm may also be related to the presence of hemoglobin, which scavenges,
and thus prevents the vasodilatory action of EDRF/NO (25). The isolated
cerebral arteries of rats with subarachnoid haemorrhage were found to be more
sensitive to vasoconstrictory properties of ETs (218). Alternatively ETs were
reported to activate NO release and cGMP accumulation not only in the
different vascular beds (172, 177, 178), but also in neuroblastoma x rat glioma
hybrid cells (219). Thus, the observed vascular and the delayed ischemic deficit
results from the complicated paralelly running processes.

It seems that ETs are mostly involved in pathological events in our body.
They may mediate fatal contractions of our microvasculature and
hypertension. They may promote the tumor growth and atherosclerosis
development by mitogenic activity. They promote the cell death by overloading
with Ca** ions. And the activation of vasodilatory EDRF/NO or PGI, or

PGE, (220) may not counteract its pathogenicity.

Arachidonic acid metabolites

Eicosanoids are biological mediators derived from arachidonic acid (AA),
an essential 20-carbon fatty acid of membrane phospholipids (221 —223). AA
may be metabolized by either cyclooxygenases (COX) forming prostacyclin
(PGL,), prostaglandins (PGs) or thromboxane (TXA,), or by lipoxygenases
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(LOX), leading to formation of leukotrienes (LTs) and dihydroxy fatty acids
(HETESs). Lipoxygenases with specificity for the 5-, 12-, or 15- position have
been characterized (222), and lipoxins (LXs) are compounds resulting from AA
metabolism by two different LOX (221). LXs are mostly involved in the
immune/inflammatory processes in our body (221).

The levels of prostanoids in brain tissue and cerebrospinal fluid are rather
low (222, 223), however, the injury to a neural tissue such as trauma, ischaemia,
hypoxia, reperfusion or subarachnoid haemorrhage causes a considerable
increase in amounts of free arachidonic acid and its metabolites in brain (224,
225) and CSF (225, 226).

There are marked species differences in the ability of AA conversion to the
different eicosanoids. In the brain of gebril and rabbits the main PGs are as
follows (in the decreasing order): PGD,, PGF,,, PGE, > 6-ketoPGF,,, TXB,
(227, 228), while in canine brain the low concentrations of PGD,, with the
relatively high 6-keto F,, were found. In human brain PGF,, is the
predominating PGs followed by PGE, and low concentrations of 6-keto
PGF,, (229). A relatively high level of 6-keto PGF,_ in the CSF argues for the
biosynthesis of PGI, by the choroid plexus and pial vessels (224). The ability of
a rabbit, gebril and human brain to generate LTs has been recently
demonstrated (230, 231, 232). In contrary to other prostanoids,
sulfidopeptide-LTs (LTC,, LTE,, LTD,) level is relatively low. However, when
synthesized, they participate in the development of the brain injuries, such as
vasoconstriction, oedema, and seizure activity (232, 233, 234).

The postischaemic production of prostanoids was extensively studied in
gebril brain, because of the specificity of brain blood redistribution (the
carotid arteries are the only way of supply). PGD, predominated in cortex
and hypothalamus, PGE, and 6-ketoPGF,, in hippocampus. The
pathophysiological meaning of this event is not clear. The increase of PGF,,
was observed in the development of cytotoxicity whereas the late accumulation
of PGE, in cerebral tissue was coupled with vasogenic brain oedema (235,
236). In patients with stroke (237, 238), or with aneurysmal subarachnoid
haemorrhage (239, 240), an imbalance between vasoconstrictory PGD,,
PGF,,, and TXA,, and vasodilatatory PGI, levels in cerebrospinal fluid
1s suggested. It may be responsible for the development of vasoconstriction
(241), since only PGI, from among the other prostanoids dilates the vessels
of CNS (242).

Cerebral ischaemia is associated with the generation of oxygen free radicals,
which accelerate during the reperfusion phase. Superoxide anion, hydroxyl
radical, and singlet oxygen destroy endothelium and its products such as PGI,
and EDRF/NO. Since both autacoids act synergistically in inhibiting platelet
activity, the local aggregation of plateles, accompanied by the decreased
plasma fibrinolytic activity, promotes local thromboembolic complications
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(243). The metabolic and functional protection of the ischaemic brain of the
spontaneously hypersensitive rats was observed during pretreatment with the
PGI,-analogue or TXA, synthase inhibitor OKY-046 or trapidil (244). So far,
a selective pharmacological inhibition of TXA, synthase has been shown to be
beneficial in only a few experimental models of cerebral ischaemia. The
insufficient amounts of endogenous PGI, biosynthesized during the brain
insult may be more important in brain injury pathology. In dogs with
subarachnoid haemorrhage, ibuprofen (a COX inhibitor), prevented cerebral
vasospasm (245), whilst indomethacin decreased basal cerebral blood flow,
probably due to the inhibition not only of TXA,, but also PGI, formation
(246). In the treatment of experimental brain ischaemia in dogs, the best
therapeutical results were obtained when PGI, was simultaneously
administered with indomethacin and additionally with heparin (247 —249). The
beneficial effects of PGI, in brain injury are supposed to be related to
vasodilatatory, antiplatelet/fibrinolytic and “cytoprotective” properties of this
eicosanoid. On the basis of experimental work, it is stressed, that the beneficial
effect of PGI, administration is observed only when it is administered before,
or during the initial period of brain injury (250, 251). The intensive research in
these fields is in progress and the other combinations (for example, with
calcium channel blockers) have recently been proposed (252).

As the brain cannot repair itself by increasing the number of neurons, the
early preventive therapeutical intervention is necessary in case of any signs of
cerebellar insufficient blood supply. The surgery with carotid endarterectomy is
the common intervention with recommended antiplatelet and fibrinolytic
therapy (253 —255).

Aspirin alone, or combined with dipyridamole, sulphinpyrazone, warfarin,
heparin, streptokinase or ticlopidine is commonly used in secondary stroke
prevention (256, 257). The latest meta-analysis of seven randomized, controlled
trials, in which the effectiveness of aspirin in the treatment of 6409 patients with
TIA and minor strokes was examined, demonstrated the significant risk
reduction for total death, total strokes and cardiovascular death in patients
receiving this compound (257). These trials have proved that aspirin is
preventive in patients with TIA and minor strokes.

The preliminary trials of the treatment of ischaemic stroke with PGI,
pointed at a significant alleviation of neurological deficit which occurred at
6 and 54 hour after the treatment with PGI,, however, this improvement in
two weeks after the treatment was no more statistically different from the
group of patients receiving the conventional therapy (258). The
placebo-controlled, randomized trials (259, 260) demonstrated that between the
period of 2 weeks and 18 months there is no evidence for a therapeutic benefit
from prostacyclin given even in the maximally tolerated dosage, either
intermittently or continuously for 30—64 hours to patients with an acute,



208

completed stroke. Thus, prostacyclin alone seems to be too weak to prevent
all signs of ischaemic insult in completed stroke, but it does not exclude
its usefulness (also in combined therapy with TXA,, or LOX inhibitors)
in patients with TIA.

CONCLUSIONS

Discovery of the neuronal source and the functions of the labile substances,
found previously to originate from endothelial cells, opened the large
possibility for the research, and new ways to understanding the physiology and
pathology of our nervous system. These substances affect neurons, glia,
endothelial cells, vascular smooth muscle and platelets by elevating cyclic
nucleotide levels, modifying [Ca**], levels, and the release of
neurotransmitters. Their disturbed biosynthesis contributes to the development
of atherosclerosis, as well as to ischaemic neuronal injury associated with
stroke and subarachnoid haemorrhage. For most of these substances (maybe,
excluding PGI,, and TXA,), in spite of intensive study, it is too early for the
final statement concerning the therapeutical implications of drugs modifying
their biosynthesis.
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