PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 58 | 2 |

Tytuł artykułu

Effect of organic phosphorus and nitrogen enrichment of mesotrophic lake water on dynamics and diversity of planktonic microbial communities - DNA and protein case studies [mesocosm experiments]

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Effects of mesotrophic lake water enrichment with organic phosphorus and nitrogen substrates (DNA and model protein, bovine serum albumin - BSA) on dynamics and diversity of natural microbial communities (bacteria, heterotrophic nanoflagellates, ciliates) were studied in mesocosm experiments. Simultaneous enrichment with DNA and BSA strongly increased the abundance and biomass of all studied groups of microorganisms and induced changes in their morphological and taxonomic structure. The increased participation of large heterotrophic nanoflagellates cells (larger than 10 μm) in their total numbers and shifts in taxonomic and trophic Structure of the ciliates, from algivorous to small bacterivorous, species were observed. Grazing caused changes in bacterial size distribution in all enriched mesocosms. Large (10-50 μm) filamentous bacteria significantly contributed to the total bacterial numbers and biomass. Pronounced increase in populations of (β- and γ-Proteobacteria was found in lake water enriched with organic P and N sources, whereas α-Pmteobacteria did not change markedly in the studied mesocosms. DNA additions stimulated the rates of bacterial secondary production. BSA shortened the rates of bacterial biomass turnover in lake water. Relatively high and constant (~ 30%) percentage contribution of active bacteria (MEM+) in two mesocosms enriched with DNA and DNA+BSA suggested the important role of nucleic acids as a source of phosphorus for bacterial growth, activity and production. Numerous and statistically significant correlations between bacteria and protists indicated the direct and selective predator-prey relationship.

Wydawca

-

Rocznik

Tom

58

Numer

2

Opis fizyczny

p.163-180,fig.,ref.

Twórcy

autor
  • University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland

Bibliografia

  • Adamczewski T., R.J. Chróst, K. Kalinowska and A. Skowrońska. 2009. Relationships between bacteria and heterotrophic nanoflagellates in lake water examined by means of different techniques controlling grazing pressure. Aquat. Microb. Ecol. (in press).
  • Amann R.I., B.J. Binder, R.J. Olson, S.W. Chisholm, R. Devereux and D.A. Stahl. 1990. Combination of 16S-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919-1925.
  • Arndt H. 1993. Rotifers as predators on components of the microbial food web (bacteria, heterotrophic flagellates, ciliates) - a review. Hydrobiologia 255/256: 231-246.
  • Arrar E.J. and G.B. Collins. 1997. Method 445.0. In vitro determination of chlorophyll a and phenophytin a in marine and freshwater algae by fluorescence. National Exposure Research Laboratory. Office of Research and Development. U.S. Environmental Protection Agency.
  • Auer B. and H. Arndt. 2001. Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season. Freshwat. Biol. 46: 959-972.
  • Bennett M.E. and J.E. Hobbie. 1972. The uptake of glucose by Chlamydomonas sp. J. Phycol. 8: 392-398.
  • Bennett S.J., R.W. Sanders and K.G. Porter. 1990. Heterotrophic, autotrophic, and mixotrophic nanoflagellates: Seasonal abundances and bacterivory in a eutrophic lake. Limnol. Oceanogr. 35: 1821-1832.
  • Børsheim K.Y. and G. Bratbak. 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from sea water. Mar. Ecol. Prog. Ser 36: 171-175.
  • Carrias J.F., C. Amblard and G. Bourdier. 1996. Protistan bacterivory in an oligomesotrophic lake: importance of attached ciliates and flagellates. Microb. Ecol. 31: 249-268.
  • Chróst R.J. 2002. Concentration and fate of free, dissolved in water, extracellular DNA in lake ecosystems. Proc. 8th Symposium on Aquatic Microbial Ecology, Taormina, Italy.
  • Chróst R.J. 2004. Concentration and fate of free, dissolved in water, extracellular DNA in lake ecosystems. Proc. 4th Symposium for European Freshwater Sciences, Kraków, Poland.
  • Chróst R.J. and M.A. Faust. 1999. Consequences of solar radiation on bacterial secondary production and growth rates in subtropical coastal water (Atlantic Coral Reef off Belize, Central America). Aquat. Microb. Ecol. 20: 39-48.
  • Chróst R.J. and H. Rai. 1994. Bacterial secondary production, pp. 92-117. In: Overbeck J. and R.J. Chróst (eds). Microbial Ecology of Lake Pluâsee. Springer Verlag, New York.
  • Chróst R.J. and W. Siuda. 2006. Microbial production, utilization and enzymatic degradation of organic matter in the upper trophogenic water layer in the pelagial zone of lakes along the eutrophication gradient. Limnol. Oceanogr 51: 749-762.
  • Chróst R.J., M. Koton and W. Siuda. 2000. Bacterial secondary production and bacterial biomass in four Mazurian Lakes of differing trophic status. Pol. J. Environ. Stud. 9: 255-266.
  • Chróst R.J., J. Overbeck and R. Wcisło. 1988. Evaluation of the [³H]thymidine methods for estimating bacterial growth rates and production in lake water: re-examination and methodological comments. Acta Microbiol. Pol. 37: 95-112.
  • Chróst R.J., T. Adamczewski, K. Kalinowska and A. Skowrońska. 2009. Inorganic phosphorus and nitrogen modify composition and diversity of microbial communities in water of mesotrophic lake. Polish J. Microbiol. 58: 77-90.
  • Chróst R.J., U. Münster, H. Rai, D. Albrecht, K.P. Wetzel and J. Overbeck. 1989. Photosynthetic production and exoenzymatic degradation of organic matter in the euphoric zone of eutrophic lake. J. Plankton Res. 11: 223-242.
  • Corno G. and K. Jürgens. 2006. Direct and indirect effects of protest predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl. Environ. Microbiol. 1: 78-86.
  • Cottrell M.T. and D.L. Kirchman. 2000. Natural assemblages of marine proteobacteria and member of the Cytophaga-Flavobacter cluster consuming low- and high-molecular weight dissolved organic matter. Appl. Environ. Microbiol. 66: 1692-1697.
  • Covert J.S. and M.A. Moran. 2001. Molecular characterization of estuarine bacterial communities using high-and-low molecular weight dissolved organic carbon. Aquat. Microb. Ecol. 25: 127-139.
  • del Giorgio P.A., J.M. Gasol, D. Vaque, P. Mura, S. Agusti and C.M. Duarte. 1996. Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41: 1169-1179.
  • Ferguson R.L. and W.G. Sunda. 1984. Utilization of amino acids by planktonie marine bacteria: Importance of clean technique and low substrate additions. Limol. Oceanogr. 29: 258-274.
  • Fisher M.M., J.L. Klug, G. Lauster, M. Newton and E.W. Triplett. 2000. Effects of resources and trophic interactions on freshwater bacterioplankton diversity. Microb. Ecol. 40: 125-138.
  • Flaten G.-A.F., T. Castberg, T. Tanaka and T.F. Thinstad. 2003. Interpretation of nutrient-enrichment bioassays by looking at sub-populations in a marine bacterial community. Aquat. Microb. Ecol. 33: 11-18.
  • Foissner W., H. Berger, H. Blatterer and F. Kohmann. 1991-95. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems, Band I-IV. Bayer. Landesamt für Wasserwirtschaft, München.
  • Foissner W., H. Berger and J. Schaumburg. 1999. Identification and Ecology of Limnetic Plankton Ciliates. Bayer. Landesamt für Wasserwirtschaft, München.
  • Gonzales J.M., E.B. Sherr and B.F. Sherr. 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56: 583-589.
  • Hagström A., J.A. Ammerman, S. Henrichs and F. Azam. 1984. Bacterioplankton growth in seawater. 2. Organic matter utilization during steady-state growth in seawater cultures. Mar. Ecol. Prog. Ser. 18: 41-48.
  • Hahn M.W. and M.G. Höfle. 2001. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol. Ecol. 35: 113-121.
  • Hollibaugh J.T. and F. Azam. 1983. Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr. 28: 1104-1116.
  • Hornák K., M. Masin, J. Jezbera, Y. Bettarel, J. Nedoma, T. Sime-Ngano and K. Šimek. 2005. Effects of decreased resource availability, protozoan grazing and viral impact on structure of bacterioplankton assemblage in a canyon-shaped reservoir FEMS Microbiol. Ecol. 52: 315-332.
  • Joint I., P. Henriksen, G.A. Fonnes, D. Bourne, T.F. Thingstad and B. Rieman. 2002. Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms. Aquat. Microb. Ecol. 29: 145-159.
  • Jørgensen N.O.G. and C.S. Jacobsen. 1996. Bacterial uptake and utilization of dissolved DANN. Aquat. Microb. Ecol. 11: 263-270.
  • Jürgens K., J. Pernthaler, S. Schalla and R. Amann. 1999. Morphological and compositional changes in planktonic bacterial community in response to enhanced protozoan grazing. Appl. Environ. Microbiol. 65: 1241-1250.
  • Jürgens K. and G. Stolpe. 1995. Seasonal dynamics of crustacean Zooplankton, heterotrophic nanoflagellates and bacteria in a shallow, eutrophic lake. Freshwat. Biol. 33: 27-38.
  • Koton-Czarnecka M. and R.J. Chröst. 2003. Protozoans prefer large and metabolically active bacteria. Pol. J. Environ. Stud. 12: 325-334.
  • Kritzberg E.S., S. Langenheder and E.S. Lindström. 2006. Influence of dissolved organic matter source on lake bacterioplankton structure and function-implications for seasonal dynamics of community composition. FEMS Microbiol. Ecol. 56: 406-417.
  • Lebaron P., P. Servais, M. Troussellier, C. Courties, G. Muyzer, L. Bernard, H. Schäfer, R. Pukall, E. Stackebrandt, T. Guindulain and J. Vives-Rego. 2001. Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in abundances, activity and composition. FEMS Microbiol. Ecol. 34: 255-266.
  • Lee S. and J.A. Fuhrman. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53: 1298-1303.
  • Manz W., R. Amann, W. Ludwig, M. Wagner and K.H. Schleifer. 1992. Phylogenetic Oligonucleotide probes fori the major subclasses of Proteobacteria: Problems and solutions. Syst. Appl. Microbiol. 15: 593-600.
  • Manz W, R. Amann, M. Vancanneyt and K.-H. Schleifer. 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in the natural environment. Microbiology 140: 2849-2858. Münster U. 1984. Distribution, dynamie and structure of free dissolved carbohydrates in the Plußsee, a North German eutrophic lake. Verh. Inter. Verein. Limnol. 22: 929-935.
  • Sambrook J., E.F. Fritsch and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  • Münster U. and R.J. Chróst. 1990. Origin, composition and microbial utilization of dissolved organic matter, pp. 8-46. In: Over-beck J. and R.J. Chróst (eds). Aquatic Microbial Ecology - Biochemical and Molecular Approaches. Springer-Verlag, New York.
  • Neef A. 1997. Ph.D. Thesis. Anwendynng der in situ – Einzelzell-identifizierung von bakterien zur populationsanalyse in komplexen mikrobiellen biozonosen. Technische Universitat München. Munich. Germany.
  • Olapade O.A. and L.G. Leff. 2005. Seasonal response of stream biofilm communities to dissolved organic matter and nutrient enrichments. Appl. Environ. Microbiol. 71: 2278-2287.
  • Paranjape M. 1980. Occurrence and significance of resting cysts in a hyaline tintinnid Helicostomella subulata (Ehre.) Jorgensen. J. Exp. Mar Biol. Ecol. 48: 23-33.
  • Paul J.H., W.H. Jeffery and M.F. DeFlaun. 1987. Dynamics of extracellular DNA in the marine environment. Appl. Environ. Microbiol. 53: 170-179.
  • Pernthaler J., F.O. Glöckner, W. Schonhuber and R. Amann. 2001. Fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes. Methods in Microbiology 30: 207-226.
  • Pernthaler A., CM. Prestom, J. Pernthaler, E.F. Delong and R. Amann. 2002. A comparison of fluorescently labeled oligonucleotide and polynucleotide probes for detection of pelagic marine bacteria and Arachaea. Appl. Environ. Microbiol. 68: 661-667.
  • Pernthaler J., B. Sattler, K. Šimek, A. Schwarzenbacher and R. Pssener. 1996. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat. Microb. Ecol. 10: 255-263.
  • Pomeroy L.R. and W.J. Wiebc. 2001. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat. Microb. Ecol. 23: 187-204.
  • Porter K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948.
  • Psenner R. 1993. Determination of size and morphology of aquatic bacteria by automated image analysis, pp. 339-345. In: Kemp P.F., B.F. Sherr, E.B. Sherr and J.J. Cole (eds). Handbook of Methods in Aquatic Microbial Ecology. Lewis Publ, Boca Raton, Fla.
  • Putt M. and D.K. Stoecker. 1989. An experimentally determined carbon: volume ratio for marine "oligotrichous" ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097-1103.
  • Schumann R., U. Schiewer, U. Karoten and T. Rieling. 2003. Viability of bacteria from different aquatic habitats. II. Cellular fluorescent markers for membrane integrity and metabolic activity. Aquat. Microb. Ecol. 32: 137-150.
  • Schutter M. and R. Dick. 2001. Schifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biol. Biochem. 33: 1481-1491.
  • Sherr B.F. and E.B. Sherr. 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic environments, pp. 412-423. In: Klug M.J. and C.A. Reddy (eds). Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington, D.C.
  • Šimek K., J. Bobkova, M. Macek, J. Nedoma and R. Psenner. 1995. Ciliate grazing on picoplankton in eutrophic reservoir during summer phytoplankton maximum: a study at the species and community level. Limnol. Oceanogr 40: 1077-1090.
  • Šimek K., J. Jezbera, K. Hornak, J. Vrba and J. Seda. 2004. Role of diatom-attached choanoflagellates of the genus Salpingoeca as pelagic bacterivores. Aquat. Microb. Ecol. 36: 257-269.
  • Šimek K., K. Jürgens, J. Nedoma, M. Comcrma and J. Armengol. 2000. Ecological role and bacterial grazing of Halteria spp.: small oligotrichs as dominant pelagic ciliate bacterivores. Aquat. Microb. Ecol. 22: 43-56.
  • Siuda W. and R.J. Chróst. 2001. Utilization of selected dissolved organic phosphorus compounds by bacteria in lake water under non-limiting orthophosphate conditions. Pol. J. Environ. Stud. 10: 475-483.
  • Siuda W., R.J. Chróst and H. Güde. 1998. Distribution and origin of dissolved DNA in lakes of different trophic states. Aquat. Microb. Ecol. 15: 89-96.
  • Wallner G., R. Amann and W. Beisker. 1993. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14: 136-143.
  • Weinbauer M.G. and M.G. Höfle. 1998. Distribution and life strategies of two bacterial populations in eutrophic lake. Appl. Environ. Microbiol. 64: 3776-3783.
  • Williams P.M. 1986. Chemistry of dissolved and particulate phases in the water column, pp. 53-172. In: Eppley W. (ed). Plankton Dynamics of the Southern California Bight. Springer- Verlag, New York.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-34111ddf-cdfc-4836-8b1b-e0343fb312e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.