PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 55 | 4 |

Tytuł artykułu

Pyrrolizidine alkaloids - chemistry, biosynthesis, pathway, toxicity, safety and perspectives of medicinal usage

Warianty tytułu

PL
Alkaloidy pirolizydynowe - chemia, biosynteza, szlak metaboliczny, toksycznosc, bezpieczenstwo i perspektywy zastosowania w medycynie

Języki publikacji

EN

Abstrakty

EN
Pyrrolizidine alkaloids (PAs) are the class of secondary metabolites that evolved as a powerful tool in the plant defensive interactions against herbivores. The occurrence of PAs in the plant world is scattered in several unrelated botanic families with special abundance in Asteraceae, Boraginaceae and Fabaceae. Homospermidine synthase (HSS) was recognized as a key enzyme that catalyzes homospermidine formation from polyamines. The studies of HSS kinetic and gene sequence revealed that it is of polyphyletic origin and raised as a result of deoxyhypusine synthase (DHS) gene duplication. The ability of PAs production occurred independently at least four times in course of plant evolution. The PAs biosynthesis is tightly correlated with growth phase and biomass production. It is supposed that PAs biosynthesis is individually regulated in different lineages of plants. The PAs with a 1,2 unsaturated necine skeleton show toxic activity (hepatoxicity, carcinogenicity, genotoxicity, teratogenocity and cytotoxicity). It is though that pyrrolic esters formation during the detoxication process in the liver is the main mechanism of PAs toxicity. The pyrrolic esters are highly reactive and tend to bind rapidly with nucleophilic macromolecules including DNA and DNA-protein inducing hepatotoxicity or tumorigenecity. The problem of PAs toxicity cause the restrictions in the production and sale of herbal products. This review encompasses the present status of the pyrrolizidine alkaloids in the plants studies and summarize the topics of chemistry, biosynthesis, evolution including the involved genes, the factors affecting on biosynthesis, accumulation and toxicity of PAs.
PL
Alkaloidy pirolizydynowe (PA) to metabolity wtórne, które stanowią potężną broń roślin stosowaną w reakcjach obronnych przeciwko roślinożercom. Występują w kilkunastu nie spokrewnionych ze sobą rodzinach botanicznych, szczególnie często wśród przedstawicieli Asteraceae, Boraginaceae i Fabaceae. Stwierdzono, że syntaza homospermidyny (HSS) jest kluczowym enzymem katalizującym powstawanie hompspermidyny z poliamin. Badania kinetyki enzymu oraz sekwencji genów ujawniły jego polifiletyczne pochodzenie: powstał on w wyniku duplikacji genu syntazy deoksyhypuzyny (DHS). Zdolność do produkcji alkaloidów pirolizydynowych pojawiła się w toku ewolucji przynajmniej cztery razy niezależnie w różnych liniach rodowych. Biosynteza PA jest ściśle związana z fazą wzrostu i produkcją biomasy. Przypuszcza się, że biosynteza tych związków jest odmiennie regulowana (indywidualnie) w różnych grupach roślin produkujących alkaloidy. PA pochodzące od necyny z podwójnym wiązaniem w położeniu 1,2 ich estrów działają toksycznie: hepatotoksycznie, rakotwórczo, cytotoksycznie, teratogennie i mutagennie. Za główny mechanizm prowadzący toksyczności uważa się formowanie piroli PA (estry dihydropirilizydyny), które powstają w procesie detoksykacji w wątrobie. Bardzo reaktywne pirole wiążą się z dużymi cząsteczkami protein i kwasów nukleinowych, a także kompleksów DNA-białko, powodując działanie hepatoksyczne i rakotwórcze. Problem toksyczności alkaloidów pirolizydynowych skutkuje ograniczeniami i restrykcjami w produkcji i sprzedaży produktów zielarskich zawierających rośliny produkujące PA. Praca przedstawia obecny stan badań dotyczących alkaloidów pirolizydynowych i obejmuje takie zagadnienia jak: budowa chemiczna, biosynteza, ewolucja z uwzględnieniem powiązanych genów oraz czynniki wpływające na biosyntezę i gromadzenie, a także toksyczność PA.

Wydawca

-

Czasopismo

Rocznik

Tom

55

Numer

4

Opis fizyczny

p.127-147,fig.,ref.

Twórcy

autor
  • Institute of Natural Fibres and Medicinal Plants, Libelta 27, 61-707 Poznan, Poland
autor
autor

Bibliografia

  • 1. Hartmann T, Ober D. Biosynthesis and Metabolism of Pyrrolizidine alkaloids in Plants and Specialized Insect Herbivores. Topics Curr Chem 2002; 209:207-43.
  • 2. Thoden TC, Bopré M, Hallmann J. Pyrrolizidine alkaloids of Chromolaena odorata act as nematicidal agents and reduce infection of lettuce roots by Meloidogyne incognita. Nematology 2007; 9:343-9.
  • 3. Rotschild M, Aplin RT, Cockrum PA, Edgar JA, Fairweather P, Lees R. Pyrrolizidine Alkaloids in arctiid moths (Lep.) with a discussion on host plant relationships and the role of these secondary plant substances in the Arctiidae. Biol J Linn Soc 1979; 12(4):305-26.
  • 4. Bezzerides A, Yong TH, Bezzerides J, Husseini J, Ladau J, Eisner M, Eisner T. Plant-derived pyrrolizidine alkaloid protects eggs of a moth (Uthesia ornatix) against a parasitoid wasp (Trichogramma ostriniae). Proc Nat Acad Sci USA 2004; 101(24):9029-32.
  • 5. Lindigkeit R, Biller A, Buch M, Schibel H-M, Boppré M, Hartman T. The two faces of Pyrrolizidine Alkaloids: the Role of the Teriary Amine and its N-Oxide in chemical Defense of Insects with Acquired Plant Alkaloids. Eur J Biochem 2004; 245(3):626-36.
  • 6. Schulz S. Insect-Plant Interactions – Metabolism of Plant Compounds to Pheromones and Allomones by Lepidoptera and Leaf Beetles. Eur J Org Chem 1998; 1:13-20.
  • 7. Bernays EA, Chapman RF, Hartmann T. A highly sensitive taste receptor cell for pyrrolizidine alkaloids in the lateral galeal sensillum of a polyphagous caterpillar, Estigmene acraea. J Comp Physiol A 2002; 188:715-23.
  • 8. Bush LP, Wilkinson HH, Schardl CL. Bioprotective Alkaloids of Grass-Fungal Endophyte Symbioses. Plant Physiol 1997; 114:1-7.
  • 9. Schardl CL, Grossman RB, Nagabyuru P, Faulkner JR, Malik UP. Loline alkaloids: currencies of mutualism. Phytochemistry 2007; 68(7):980-96.
  • 10. Hartmann T. Chemical ecology of pyrrolizidine alkaloids. Planta 1999; 207:483-95.
  • 11. Pyrrolizidine Alkaloids in Food. A toxicology Review and Risk Assessment. Technicial Report. Series No 2. 2001 Australia New Zealand Food Authority:1-16
  • 12. Reimann A, Nurhayati N, Backenköhler A, Ober D. Repeated evolution of the Pyrrolizidine AlkaloidMediaTED Defense System in Separated Angiosperm Lineages. The Plant Cell. 2004; 16:2772-84.
  • 13. Koulman A, Seelinger C, Edwards PJB, Fraser K, Simpson W, Johnson L, Cao M. Rasmussen S, Lane GA. E/Zthesine –O-4’-α-rhamnoside, pyrrolizidine conjugates produced by grasses (Poaceae). Phytochemistry. 2008; 69:1927-32.
  • 14. Ober D, Kaltenegger E. Pyrrolizidine alkaloids biosynthesis, evolution of a pathway in plant secondary metabolism. Phytochemistry 2009; 70:1687-95.
  • 15. Roeder E. Medicinal plants in Europe containing pyrrolizidine alkaloids. Pharmazie 1995; 50:83-98.
  • 16. Mattocks AR. Toxicity of pyrrolizidine alkaloids. Nature 1968; 217:723-8.
  • 17. Furbee RB, Barlotta KS, Allen MK, Holstege CP. Hepatotoxicity Associated with Herbal Products. Clin Lab Med 2006; 26:227-41.
  • 18. Roulet M, Laurini R, River L, Calame A. Hepatic veno-occlusive disease in newborn infant of a woman drinking herbal tea. J Pediatr 1988; 112:433-6.
  • 19. Monography of E Commission Bundesanzeiger nr 138 z 27.07.1990. In: Rośliny Lecznicze w Fitoterapii. Research Institute of Medicinal Plants. Poznań 2000.
  • 20. Bundesgesetzblatt 1994. Nr 555 z 21 lipca 1994, Verordnung 469:7.
  • 21. Rozporządzenie Ministra Zdrowia z 30 maja 2003 r. w sprawie przedstawienia dokumentacji dołączanej do wniosku o dopuszczenie do obrotu produktu leczniczego. Dz. U. z 2003 nr 154 poz. 1506.
  • 22. Coulombe RA. Pyrrolizidine alkaloids in foods. Adv Food Nutr Res 2003; 45:61-99.
  • 23. Crews C, Berthiller F, Krska R. Update on analytical methods for toxic Pyrrolizidine alkaloids. Anal Bioanal Chem 2009. Published online: Springer.
  • 24. Report on Caricinogens. Draft Background Document for Riddelliine. U.S. Department of Health and Human Services. Public Health Services. National Toxicology Program 2008.
  • 25. European Food Safety Authority. Opinion the scientific panel on contaminants in the food chain on a request from the European Commission related to pyrrolizidine alkaloids as undesirable substances in animal feed. The EFSA Journal 2007; 447:1-51.
  • 26. Haraborne JB, Baxter H, Moss GP. Phytochemical Dictionary. A Handbook of Bioactive Compounds from Plants. 2nd ed. 1999; 26:287-300.
  • 27. Herrmann M, Joppe H, Schmaus M. Thesinine- 4’-O-βD-glucside the first glycosylated plant pyrrolizidine alkaloid from Borago officinalis. Phytochemistry 2002; 60(4):399-402.
  • 28. Stickel F, Seitz HK. The efficacy and safety of comfrey. Public Health Nutrition 2000; 3(4A):501-8.
  • 29. Liddell JR. Pyrrolizidine alkaloids. Natural Product Reports 1998; 363-70.
  • 30. Jiang Y, Fu PP, Lin G. Hepatotoxicity of naturally occurring pyrrolizidine alkaloids. Asian Journal of Pharmacodynamics and Pharmacokinetics 2006; 6(3):187-92.
  • 31. Ravi S, Ravikumar R, Lakshmanan AJ. Pyrrolizidine alkaloids from Cynoglossum furcatum. J Asian Nat Prod Res 2008;10(3-4):349-54.
  • 32. Alali FQ, Tahboub YR, Ibrahim ES, Qanadil AM, Tawaha k, Burgess JP, Sy A, Nakanishi Y, Kroll DJ, Oberlies NH. Pyrrolizidine alkaloids from Echium glomeratum (Boraginaceae). Phytochemistry 2008; 69(12):2341-6.
  • 33. Souza JSN, Machado LL, Pessoa ODL, Braz-Filho R, Overk CR, Yao P, Cordel GA, Lemos TLG. Pyrrolizidine alkaloids from Heliotropium indicum. J. Braz Chem Soc 2005; 16(6).
  • 34. O’Dowd DJ, Edgar JA. Seasonal dynamics in pyrrolizidine alkaloids of Heliotropum europaeum.Australian Journal of Ecology 1989; 18:95-105.
  • 35. WHO-IPCS (World Health Organisation-International Programme of Chemical Safety). Pyrrolizidine Alkaloids. Environ Health Criteria 1988; 80:1-345.
  • 36. Kretsi O, Aligiannis N, Skaltsounis AL, Chinou IB. Pyrrolizidine Alkaloids from Onosma leptantha. Helvetica Chimica Acta 2009; 86(9):3136-40.
  • 37. Bartkowski JP, Wiedenfeld H, Roeder E. Quantitative Photometric Determination of Senkirkine in Farfare Folium. Phytochemical Analysis 1998; 8(1):1-4.
  • 38. Wiedenfeld H, Montes C, Tawil B, Contin A, Wynma R. Pyrrolizidine alkaloid level in Senecio bicolor (Wilid.) Tod, ssp. cineraria (DC.) from middle Europe. Pharmazie 2006; 61(6):559-61.
  • 39. Tundis R, Loizzo MR, Statti GA, Passalacqua NG, Peruzzi L, Menichini F. Pyrrolizidine alkaloids Profiles of the Senecio cineraria Group (Asteraceae). Z Naturforsch 2007; 62c: 467-72.
  • 40. Chizzola R. The main pyrrolizidine alkaloids of Petasites hybridus: variation within and between populations. Acta Horticulturae 1993; 333:143-50.
  • 41. Lin G, Rose P, Chatson KB, Hawes EM, Zhao XG, Wang ZT. Characterization of two structural forms of otonecine-type pyrrolizidine alkaloids from Ligularia hodgsonii by NMR spectroscopy. Journal of Natural Products 2000; 63(6):857-60.
  • 42. Tan A, Wang Z, He H, Zhang M, Hao X. New Pyrrolizidine Alkaloids from Ligularia Tsangchanensis. Heterocycles 2003; 60(5):1195-8.
  • 43. Facchini PJ. Regulation of Alkaloid Biosynthesis in Plants. Chapter 1. The Alkaloids. 2006; 63:1-44.
  • 44. Graser G, Hartmann T. Biosynthesis of spermidine, a direct precursor of pyrrolizidine alkaloids in root cultures of Senecio vulgaris L. Planta 2000; 211:239-45.
  • 45. Hartmann T, Sander H, Adolf R, Toppel G. Metabolic links between the biosynthesis of pyrrolizidine alkaloids and polyamines in root cultures of Senecio vulgaris. Planta 1988; 175:82-90.
  • 46. Böttcher F, Ober D, Hartmann T. biosynthesis of pyrrolizidine alkaloids: putrescine and spermidine are essential substrates of enzymatic homospermidine formation. Can J Chem 1993; 72:80-85.
  • 47. Ober D, Hartmann T. Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. PNAS 1999; 96: 14777-82.
  • 48. Ober D, Harms R, Hartmann T. Cloning and expression of homospermidine synthase from Senecio vulgaris: a revision. Phytochemistry 2000; 55:305-9.
  • 49. Anke S, Niemüller D, Moll S, Hänsch R, Ober D. Polyphyletic origin of pyrrolizidine alkaloids within Asteraceae. Evidence from differential tissue expression of homospermidine synthase. Plant Physiology 2004; 136:4037-47.
  • 50. Sander H, Hartmann T. Site of synthesis, metabolism and translocation of senecionine N-oxide in cultured roots of Senecio erucifolius. Plant Cell Tiss Org Cult 1989; 18:19-31.
  • 51. Frölich C, Ober D, Hartmann T. Tissue distribution, core biosynthesis and diversification of pyrrolizidine alkaloids of lycopsamine type in three Boraginaceae species. Phytochemistry 2007; 68:1026-37.
  • 52. Hartmann T, Ehmke A, Eliert U, Borstel K, Theuring C. Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides in Senecio vulgaris. Planta 1989; 177:98-107.
  • 53. Anke S, Gondé D, Kaltenegger E, Hänsch R, Theuring C, Ober D. Pyrrolizidine Alkaloid Biosynthesis in Phalenopsis Orchids: Developmental Expression of Alkaloid-Specific Homospermidine Synthase in Root Tips and Young Flower Bud. Plant Physiol 2008; 148:751-60.
  • 54. Macel M, Vrieling K, Klinkhamer PGL. Variation in pyrrolizidine alkaloid patterns in Senecio jacobaea. Phytochemistry 2004; 65:865-73.
  • 55. Hartmann T, Ober D. Chemical diversity and variation of pyrrolizidine alkaloids of senecionine type: biological need or coincidence? Planta 1998; 206:443-51.
  • 56. Trigo JR, Leal IR, Matzenbacher NI, Lewinson TM. Chemotaxonomic value of pyrrolizidine alkaloids in souther Brazil Senecio (Senecioneae: Asteraceae). Biochemical Systematics and Ecology 2003; 31:1011-22.
  • 57. Huizing HJ, Gadella ThW, Kliphuis E. Chemotaxonomical investigations of Symphytum officinale polyploidy complex and S. asperum (Boraginaceae): The pyrrolizidine alkaloids. Plant Systematics and Evolution 1982; 40:279-92.
  • 58. Vrieling K, De Vos K, Van Wijk CAM. Genetic analysis of concentration of pyrrolizidine alkaloids in Senecio jacobea. Phytochemistry 1993; 32:1141-4.
  • 59. Blankenship JD, Houseknecht JB, Pal S, Bush LP, Grossman RB, Schardl CL. Biosynthetic precursors of fungal pyrrolizidines, the loline alkaloids. Chembiochem 2005; 6:1016-22.
  • 60. Faulkner JR, Hussaini SR, Blankenship JD, Pal S, Branan BM, Grossman RB, Schardl CL. On the sequence of bond formation in loline alkaloid biosynthesis. Chembiochem 2006; 7:1078-88.
  • 61. Spiering MJ, Moon ChD, Wilkinson HH, Schardl CL. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 2005; 169:1403-14.
  • 62. Kutil BL, Greenwald C, Liu G, Spiering MJ, Schardl CL, Wilkinson HH. Comparison of loline alkaloid gene clusters across fungal endophytes: predicting the co-regulatory sequence motifs and evolutionary history. Fungal Genet Biol 2007; 44:1002-10.
  • 63. Spiering MJ, Faulkner JR, Zhang DX, Machado C, Grossman RB, Schardl CL. Role of the LolP cytochrome P450 monooxygenase in loline alkaloid biosynthesis. Fungal Genet Biol 2008; 45:1307-14.
  • 64. Park MH, Lee YB, Joe YA. Hypusine is essential for eukaryotic cell proliferation. Boil Signals 1997; 6:115-123.
  • 65. Ober D, Hartmann T. Homospermidine synthase, the first pathway specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyphusine synthase. PNAS 1999; 96:14777-82.
  • 66. Ober D, Harms R, White L, Hartmann T. Molecular evolution by change of function: alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor protein. J Biol Chem 2003; 278:12805-12.
  • 67. Park MH, Wolff EC, Folk JE. Is hypusine essential for cell poliferation. Trends Biochem Sci 1993; 18:475-9.
  • 68. Moll S, Anke S, Kahmann U, Hänsch R, Hartman T. Cell-specific expression of homospermidine synthase, the entry enzyme of the pyrrolizidine alkaloids pathway in Senecio vernalis, in comparison with its ancestor, deoxyhypusine synthase. Plant Physiol 2002; 130:47-57.
  • 69. Hopkins M, Taylor C, Liu Z, Ma F, McNamara L, Wang TW, Thompson JE. Regulation and execution of molecular disassembly and catabolism during senescence. New Phytol 2007; 175:201-14.
  • 70. Wang TW, Zhang CG, Wu W, Nowack LM, Madey E, Thompson JE. Antisense suppression of deoxyhypusine synthase in tomato delays fruits softening and alters growth and development. Plant Physiol 2005; 138:1372-82.
  • 71. Ober D, Hartmann T. Deoxyhypusine synthase from tobacco. J Biol Chem 1999; 274:32040-7.
  • 72. Wang TW, Lu L, Zhang CG, Taylor C, Thompson JE. Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana. Plant Mol Biol 2003; 52:1223-35.
  • 73. Wang H, Ma R, Li R, Wang G, Wei J. Virus-induced silencing of a tobacco deoxyhypusine synthase gene. Chinese Science Bulletine 2005; 50:2707-13.
  • 74. Ober D. Seeing double: gene duplication and diversification in plant secondary metabolism. Trends Plant Sci 2005; 10:444:9.
  • 75. Hughes AL. The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B Biol Sci 1994; 256:119-24.
  • 76. Nurhayati N, Gondè D, Ober D. Evolution of pyrrolizidine alkaloids in Phalenopsis orchids and other monocotyledons: Identification of deoxyhypusine synthase, homospermidine synthase and related pseudogenes. Phytochemistry 2009; 70:508-16.
  • 77. Abdelhady M, Beuerele T, Ober D. Homospermidine in transgenic tobacco results in considerably reduced spermidine levels but is not converted to pyrrolizidine alkaloid precursors. Plant Mol Boil 2009; 71:145-55.
  • 78. Hashimoto T, Yamada Y. New genes in alkaloid metabolism and transport. Curr Opinion Biotechnol 2003; 14:163-8.
  • 79. Von Borstel and Hartmann. Selective uptake of pyrrolizidine alkaloids by cell suspension cultures from pyrrolizidine alkaloid producing species. Plant Cell Reports 1986; 5:39-42
  • 80. Ehmke A, von Borstel K, Hartmann T. Alkaloid N-oxides as transport and vacuolar storage compounds of pyrrolizidine alkaloids in Senecio vulgaris L. Planta 1988; 176:83-90.
  • 81. Van Dam N, Vrieling K. Genetic variation in constitutive and inducible pyrrolizidine alkaloid level in Cynoglossum officinale. Oecologia 1994; 99:374-8.
  • 82. Van Dam N, van der Meijen E, Verpoorte R. Induce responses in three alkaloid-containing plant species. Oecologia 1993; 95:425-30.
  • 83. Hol WHG, Macel M, van Veen JA, van der Meijen E. Root demage and aboveground herbivory change concentration and composition of pyrrolizidine alkaloids of Senecio jacobea. Basic and Applied Ecology 2004; 5:253-60.
  • 84. Hol WHG, Vrieling K, van Veen JA. Nutrients decrease pyrrolizidine alkaloid concentration in Senecio jacobaea New Phytologist 2003; 158:175-81.
  • 85. Kowalchuk GA, Hol WHG, van Veen JA. Rhizosphere fungal communities are influenced by Senecio jacobaea pyrrolizidine alkaloid content and composition. Soil Biol Biochem 2006; 38:2852-9.
  • 86. Joosten L, Mulder PPJ, Klinkhamer PGL, van Veen JA. Soil-borne microorganisms and soil-type affect pyrrolizidine alkaloids in Jacobaea vulgaris. Plant and Soil 2009; 325:133-43.
  • 87. Schoental R. Toxicology and Carcinogenic Action of Pyrrolizidine Alkaloids. Cancer Res 1968; 28:2237-46.
  • 88. Hirono I, Mori H, Culvenor CC. Caricinogenic activity of coltsfoot, Tussilago farfara L. Gann 1976; 67:125-8.
  • 89. Mori H, Sugie S, Yoshimi N, Asada Y, Furuya T, Williams GM. Genotoxicity of a Variety of Pyrrolizidine Alkaloids in the Hepatocyte Primary Culture-DNA Repair Test Using Rat, Mouse, and Hamster Hepatocytes. Cancer Res 1985; 45:3125-9.
  • 90. Ridker PM, Ohkuma S, McDermott WV, Trey Ch, Huxtable RJ. Hepatic Venocclusive Diesease Associated with the Consumption of Pyrrolizidine –Containing Dietary Supplements. Gastroenterology 1985; 88:1050-4.
  • 91. Sperl W, Stuppner H, Gassner J, Judmaier W, Dietze O, Vogel W. Eur J Pediatr 1995; 154:112-6.
  • 92. Kraus C, Abel G, Schimmer O. Studies on the Chromosome damaging Effect of Some Pyrrolizidine Alkaloids in Human Lymphocytes in vitro. Planta Med 1985; 51:89-91.
  • 93. Fu PP, Xia Q, Lin G, Chou MW. Pyrrolizidine Alkaloids – Genotoxicity, Metabolism Enzymes, Metabolic Activation, and Mechanism. Drug Metabol Rev 2004; 36:1-55.
  • 94. Jiang Y, Fu PP, Lin G. Hepatotoxicity of naturally occurring pyrrolizidine alkaloids. Asian J Pharmacodyn Pharmacokin 2006; 6:187-92.
  • 95. Dubrovinski SB. The etiology of toxic hepatitis with ascites. In: Millenkov S.M. & Kizhaikin, Y, (ed.). [Symposium on Toxic Hepatitis With Ascites,] Tashkent, 1952. V.M. Molotov Medical Institute.
  • 96. Khanin MN. The etiology of toxic hepatitis with ascites. Arch Pathol USSR 1948; 1:42-7.
  • 97. Chauvin P, Dillon JC, Moren A. An outbreak of Heliotrope food poisoning, Tadjikistan, November 1992-March 1993. Sante 1994; 4:263-8.
  • 98. Tandon HD, Tandon BN, Mattocks RR. An epidemic of veno-occlusive disease of the liver in Afghanistan. Am J Gastroenterol 1978; 72:607-13.
  • 99. Mohabat O, Srvastava RN, Younos MS, Sediq GG, Merzad AA, Aram GN. An outbreak of hepatic venoocclusive disease in Afghanistan. Lancet 1976; 2:269-71.
  • 100. 100. Tandon BN, Tandon HD, Tandon RK, Narendranathan M, Joshi YK. Epidemic of veno-occlusive disease in central India. Lancet 1976; 2:271-2.
  • 101. Tandon BN, Krishnamurthy L, Koshy A, Tandon HD, Ramalingaswami V, Bhandari JR, Mathini MM, Mathur PD. Study of an epidemic of jaundice in North-West India, presumably due to toxic hepatitis. Gastroenterology 1977; 72:488-94.
  • 102. Selzer G, Parker RGF. Senecio poisoning exhibiting as Chiari’s syndrome: a report of 12 cases. Am J Pathol 1951; 27:885-907.
  • 103. Ka AS, Michel G, Imbert P, Diakhaté I, Seye MN. Hepatic veno-oclusive disease in a five-year–old child in Senegal. Med Trop 2006; 65:514-5.
  • 104. Stillman AS. Hepatic veno-oclusive disease due to pyrrolizidine (Senecio) poisoning in Arizona. Gastroenterology 1977; 73:349-52.
  • 105. Huxtable RJ. Herbal teas and toxins; novel aspect of pyrrolizidine poisoning in US. Perspect Biol Med 1980; 24:1-14.
  • 106. Bach N, Thung SN, Schaffner F. Comfrey herb tea-induced hepatic veno-occlusive disease. The American Journal of Medicine 1989; 87:97-9.
  • 107. Knight AP, Kimberling CV, Stermitz FR, Roby MR. Cynoglossum officinale (hound’s –tongue)-a cause of pyrrolizidine alkaloid poisoning in horses. J Am Vet Assoc 1984;185:647-50.
  • 108. Fletcher MT, McKenzie RA, Blaney BJ, Reichmann KG. Pyrrolizidine alkaloids in Crotalaria taxa from northern Australia: risk to grazing livestock. J Agric Food Chem 2009; 57:311-9.
  • 109. Nobre VMT, Dantas AFM, Riet-Correa F, Barbarosa Filho JM, Tabosa IM, Vasconcelos JS. Acute intoxication by Crotalaria retusa in sheep. Toxicon 2005; 45:347-52.
  • 110. Pass DA, Hogg GG, Russell RG, Edgar JA, Tence IM, Rikard-Bell L. Poisoning of chickens and ducks by pyrrolizidine alkaloids of Heliotropum europium. Australian Veterinary Journal 1978; 55:284-8.
  • 111. Huxtable RJ. Activation and pulmonary toxicity of pyrrolizidine alkaloids. Pharmacology and Therapeutics. 1990;47:371-389
  • 112. Mattocks AR, Cabral JR. Caricinogenecity of some pyrrolic pyrrolizidine alkaloid metabolites and analogues. Cancer Letters 1982; 17:61-6.
  • 113. Hirono I, Haga M, Fuji M, Matsuura S, Matsubara M, Nakayama M, furuya T, Hikichi M. Takanashi H, Uchida E, Hosaka S, Ueno I. Induction of hepatic tumors in rats by senkirkine and synphytine. J Natl Cancer Inst 1979; 63:469-72.
  • 114. Chan PC, Mahler JR, Bucher JR, Travlos GS, Reid JB. Toxicity and caricinogenecity of riddelline following 13 weeks of treat ment to rats and mice. Toxicon 1994; 32:891-908.
  • 115. Chan PC, Haseman JK, Prejean JD, Nyska A. Toxicity and carcinogenicity of riddelliine in rats and mice. Toxicol Lett 2003; 1444:295-311.
  • 116. Culvenor CCJ. Estimated intakes of pyrrolizidine alkaloids by humans. A comparison with dose rats causing tumors in rats. J Toxicol Enviromental Health 1983; 11:625-35.
  • 117. Robertson KA. Alkylation of N2 in deoxyguanosine by dehydroretronecine, a caricinogenic metabolite of PA monocrotaline. Cancer Res 1982; 42:8-14.
  • 118. Hinks JR, Kim HY, Segall HJ, Molyneux RJ, Stermitz FR, Coulombe RA. DNA cross-linking in mammalian cells by pyrrolizidine alkaloids: Structure-activity relationships. Toxicol Appl Pharmacol 1991;111:90-8.
  • 119. Fu PP, Xia Q, Lin G, Chou MW. Genotoxic Pyrrolizidine Alkaloids – Mechanism leading to DNA Adduct Formation and Tumorigencity. Int J Mol Sci 2002; 3:948-64.
  • 120. Xia Q, Chou MW, Edgar JA, Doerge DR, Fu PP. Formation of DHP-derived DNA adducts from metabolic activation of the prototype heliotridine-type pyrrolizidine alkaloid, lasiocarpine. Cancer Lett 2006; 231:138-45.
  • 121. Clark AM. The mutagenic activity of some pyrrolizidine alkaloids in Drosophila. Molecular General Gen 1960; 91:74-80.
  • 122. Yoon S, Mason JM, Valencia R, WoodruffRC, Zimmering S. Chemical mutagenesis testing in drosophila. IV. Results of 45 coded compounds tested for the national toxicology program. Enviromental Mutagenesis 1985; 7:349-67.
  • 123. Ji LL, Zhang M, Sheng YCh, Wang ZT. Pyrrolizidine alkaloid clivorine induces apoptosis in human normal liver L-02 cells and reduces the expression pf p53 protein. Toxicology in Vitro 2005;19:41-6.
  • 124. Wawrosch Ch, Kopp B, Wiedenfeld H. Permament monitoring of pyrrolizidine alkaloid content in micropropagated Tussilago farfara L. a tool to fulfill statutory demands for quality of coltsfoot in Austria and Germany. ISHS Acta Horticulturae 530. International Symposium on Methods and Markers for Quality Assurance in Micropropagation 2000.
  • 125. Kopp B, Wawrosch C. EU-Sortenschutz Nr EU5559 vom 6.12.1999 für Tussilago farfara L. cv. “Wien“.
  • 126. Delaney T, Ukness S, Vernooij B, Fridrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E. A central role of salicylic acid in plant disease resistance. Science 1994; 266:1247-50.
  • 127. Cho J, Hyang MK, Ryu JH, Jeong YS, Lee YS, Jin Ch.. Neuroprotective and antioxidant effects of the ethyl acetate fraction prepared from Tussilago farfara L. Biol Pharm Bull 2005; 28(3):455-60.
  • 128. Nibret E, Sporer F, Asres K, Wink M. Antitrypanosomal and cytotoxic activities of pyrrolizidine alkaloidproducing plants of Ethiopia. J Pharm Pharmacol 2009;61:801-8.
  • 129. Thoden TC, Hallmann J, Boppré M. Effect of plants containing pyrrolizidine alkaloids on the northern root-knot Meloidogyne hapla. Eur J Plant Pathol 2009; 123:27-36.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-33e9391c-3205-4576-9e52-83228822548f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.