PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 52 | 4 |

Tytuł artykułu

Wykorzystanie sekwencji genu rRNA w molekularnej diagnostyce parazytologicznej

Treść / Zawartość

Warianty tytułu

EN
Molecular diagnostic of parasites using rRNA gene sequence

Języki publikacji

PL

Abstrakty

EN
Ribosomal RNA (rRNA) is a component of the ribosomes. Eukaryotic ribosomes contain four different rRNA molecules: 18S, 5,8S, 28S and 5S rRNA. rRNA is the most conserved (least variable) gene in all cells. For this reason, genes that encode the rRNA (rDNA) are sequenced to identify an organism's taxonomic group, calculate related groups, and estimate rates of species divergence. Especially the internal transcribed spacers (ITS) are very useful for molecular diagnostic of parasite. They are noncoding regions of DNA sequence that separate genes coding for the 28S, 5.8S, and 18S ribosomal RNAs. These ribosomal RNA (rRNA) genes are highly conserved across taxa while the spacers between them may be species-specific. In this paper authors describe practical using of rRNA gene to parasite diagnostic.

Wydawca

-

Rocznik

Tom

52

Numer

4

Opis fizyczny

s.263-269,rys.,bibliogr.

Twórcy

autor
  • Szkola Glowna Gospodarstwa Wiejskiego, ul.Ciszewskiego 8, 02-786 Warszawa

Bibliografia

  • [1] Perry R.P. 1976. Processing of RNA. Annual Review of Biochemistry 45: 605-62.
  • [2] Michot B., Bachellerie J.P., Raynal F. 1983. Structure of mouse rRNA precursors. Complete sequence and potential folding of the spacer regions between 18S and 28S rRNA. Nucleic Acids Research 11: 3375-3391.
  • [3] Schnare N.M., Collings J.C., Spencer D.F., Gray M.W. 2000. The 28S-18S rDNA intergenic spacer from Crithidia fasciculate: repeated sequences, length heterogeneity, putative processing sites and potential interactions between U3 small nucleolar RNA and the ribosomal RNA precursors. Nucleic Acids Research 28: 3452-3461.
  • [4] van Nues R.W., Rientjes J.M.J., van der Sande C.A.F.M., Zerp S.F., Sluiter C., Venema J., Planta R.J., Raue H.A. 1994. Separate structural elements within internal transcribed spacer 1 of Saccharomyces cerevisiae precursor ribosomal RNA direct the formation of 175 and 26S rRNA. Nucleic Acids Research 22: 912-919.
  • [5] Veldman G.M., Klootwijk J., Van Heerikhuizen H., Planta R.J. 1981. The nucleotide sequence of the intergenic region between the 5.8S and 26S rRNA genes of the yeast ribosomal RNA operon. Possible implications for the interaction between 5.8S and 26S rRNA and the processing of the primary transcript. Nucleic Acids Research 9: 4847-4862.
  • [6] Mochizuki R., Endoh D., Onuma M., Fukumoto S. 2006. PCR-based species-specific amplification of ITS of Mecistocirrus digitatus and its application in identification of GI nematode eggs in bovine feces. Journal of Veterinary Medicine Science 68: 345-351.
  • [7] Zarlenga D.S., Chute M.B., Gasbarre L.C., Boyd P.C. 2001. A multiplex PCR assay for differentiating economically important gastrointestinal nematodes of cattle. Veterinary Parasitology 97: 199-209.
  • [8] Gasser R.B., Chilton N.B. 2001 Applications of single-strand conformation polymorphism (SSCP) to taxonomy, diagnosis, population genetics and molecular evolution of parasitic nematodes. Veterinary Parasitology 101: 201-213.
  • [9] Gasser R.B., Woods W.G., Bjorn H. 1998. PCR-based SSCP to distinguish Oesophagostomum dentatum from O. quadrispinulatum developmental stages. International Journal for Parasitology 28: 1903-1909.
  • [10] Gasser R.B., Monti J.R., Qian B.Z., Polderman A.M., Nansen P., Chilton N.B. 1998. A mutation scanning approach for the identification of hookworm species and analysis of population variation. Molecular and Biochemical Parasitology 92: 303-312.
  • [11] Sobczyk A.S., Kotomski G., Górski P., Wędrychowicz H. 2005. Usefulness of touch-down PCR assay for the diagnosis of atypical cases of Babesia canis canis infections in dogs. The Bulletin of the Veterinary Institute in Pulawy 49: 407-410.
  • [12] Foldvari G., Hell E., Farkas R. 2005 Babesia canis canis in dogs from Hungary: detection by PCR and sequencing. Veterinary Parasitology 127: 221-226.
  • [13] Sreekumar C., Vianna M.C.B., Hill D.E., Miska K.B., Lindquist A., Dubey J.P. 2005. Differential detection of Hammondia hammondi from Toxoplasma gondii using polymerase chain reaction. Parasitology International 54: 267-269.
  • [14] Perandin F., Manca N., Calderaro A., Piccolo G., Galati L., Ricci L., Medici M.C., Arcangeletti M.C., Snounou G., Dettori G., Chezzi C. 2004. Development of a Real-Time PCR Assay for Detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for Routine Clinical Diagnosis. Journal of Clinical Microbiology 42: 1214-1219.
  • [15] Snounou G., Viryakosol S., Zhu X.P., Jarra W., Pinheiro L., Rosario V.E., Thaithong S. 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Molecular and Biochemical Parasitology 61: 315-320.
  • [16] Kawamoto F., Miyake H., Kaneko O., Kimura M., Dung N.T., Liu Q., Zhou M., Duc Dao L., Kawai S., Isomura S., Wataya Y. 1996. Sequence variation in the 18S rRNA gene, a target for PCR-based malaria diagnosis, in Plasmodium ovale from Southern Vietnam. Journal of Clinical Microbiology 34: 2287-2289.
  • [17] Seesod N., Nopparar P., Hedrum A., Holder A., Thaithong S., Uhlen M., Lundeburg J. 1997. An integrated system using immuno-magnetic separation, polymerase chain reaction, and colorimetric detection for diagnosis of Plasmodium falciparum. The American Journal of Tropical Medicine and Hygiene 56: 322-328.
  • [18] Gonin P., Trudel L. 2003. Detection and differentiation of Entamoeba histolytica and Entamoeba dispar isolates in clinical samples by PCR and enzyme-linked immunosorbent assay. Journal of Clinical Microbiology 41: 237-241.
  • [19] Ghosh S., Debnath A., Sil A., De S., Chattopadhyay D.J., Das P. 2000. PCR detection of Giardia lamblia in stool: targeting intergenic spacer region of multicopy rRNA gene. Molecular and Cellular Probes 14: 181-189.
  • [20] Gonzalez L.M., Montero E., Puente S., Lopez-Velez R., Hernandez M., Sciutto E., Harrison L.J.S., Michael R., Parkhouse E., Garate T. 2002. PCR tools for the differential diagnosis of Taenia saginata and Taenia solium taeniasis/cysticercosis from different geographical locations. Diagnostic Microbiology and Infectious Disease 42: 243-249.
  • [21] Eckert J., Thompson R.C.A. 1997. Intraspecific variation of Echinococcus granulosus and related species with emphasis on their infectivity to humans. Acta Tropica 64: 19-34.
  • [22] Dinkel A., Njoroge E.M., Zimmermann A., Walz M., Zeyhle E., Elmahdi I.E., Mackenstedt U., Romig T. 2004. A PCR system for detection of species and genotypes of the Echinococcus granulosus-complex, with reference to the epidemiological situation in eastern Africa. International Journal for Parasitology 34: 645-653.
  • [23] Magalhaes K.G., Jannotti Passos L.K., dos Santos Carvalho O. 2004. Detection of Lymnaea columella Infection by Fasciola hepatica through MultiplexPCR. Memórias do Instituto Oswaldo Cruz 99: 421-424.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-3080d83e-e360-4ad3-87c8-c13aa98c2ef8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.