PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 12 | 3 |

Tytuł artykułu

The effect of growth medium on the antioxidant defense of Saccharomyces cerevisiae

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We compared the oxidation of dihydrorhodamine 123, glutathione contents and activities of superoxide dismutase (SOD) and catalase for three wild-type strains of Saccharomyces cerevisiae grown on media with different carbon sources. The rate of oxidation of dihydrorhodamine 123 was much higher in respiring cells grown on ethanol or glycerol media than in fermenting cells grown on glucose medium. The total SOD activity was highest on glycerol medium and lowest on ethanol medium, while the catalase activity was highest on glycerol medium. The sequence of glutathione content values was: glucose > ethanol > glycerol.

Wydawca

-

Rocznik

Tom

12

Numer

3

Opis fizyczny

p.448-456,fig.,ref.

Twórcy

  • University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
autor
autor

Bibliografia

  • 1. Hortner, H., Ammerer, G., Hartter, E., Hamilton, B., Rytka, J., Bilinski, T. and Ruis, H. Regulation of synthesis of catalases and iso-1-cytochrome c in Saccharomyces cerevisiae by glucose, oxygen and heme. Eur. J. Biochem. 128 (1982) 179-184.
  • 2. Sigler, K., Chaloupka, J., Brozmanova, J., Stadler, N. and Hofer, M. Oxidative stress in microorganisms--I. Microbial vs. higher cells--damage and defenses in relation to cell aging and death. Folia Microbiol. (Praha) 44 (1999) 587-624.
  • 3. Balaban, R.S., Nemoto, S. and Finkel, T. Mitochondria, oxidants, and aging. Cell 120 (2005) 483-495.
  • 4. Fiechter, A. and Gmunder, F.K. Metabolic control of glucose degradation in yeast and tumor cells. Adv. Biochem. Eng. Biotechnol. 39 (1989) 1-28.
  • 5. Shuster, J.R. Regulated transcriptional systems for the production of proteins in yeast: regulation by carbon source. Biotechnology 13 (1989) 83-108.
  • 6. Costa, V., Amorim, M.A., Reis, E., Quintanilha, A. and Moradas-Ferreira, P. Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 143 (1997) 1649-1656.
  • 7. Schuller, H.J. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr. Genet. 43 (2003) 139-160.
  • 8. Barnett, J.A. and Entian, K.D. A history of research on yeasts 9: regulation of sugar metabolism. Yeast 22 (2005) 835-894.
  • 9. Penninckx, M.J. An overview on glutathione in Saccharomyces versus nonconventional yeasts. FEMS Yeast Res. 2 (2002) 295-305.
  • 10. Pocsi, I., Prade, R.A. and Penninckx, M.J. Glutathione, altruistic metabolite in fungi. Adv. Microb. Physiol. 49 (2004) 1-76.
  • 11. Lee, J.C., Straffon, M.J., Jang, T.Y., Higgins, V.J., Grant, C.M. and Dawes, I.W. The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain. FEMS Yeast Res. 1 (2001) 57-65.
  • 12. Avery, A.M. and Avery, S.V. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J. Biol. Chem. 276 (2001) 33730-33735.
  • 13. Maris, A.F., Assumpcao, A.L., Bonatto, D., Brendel, M. and Henriques, J.A. Diauxic shift-induced stress resistance against hydroperoxides in Saccharomyces cerevisiae is not an adaptive stress response and does not depend on functional mitochondria. Curr. Genet. 39 (2001) 137-149.
  • 14. Lushchak, V., Semchyshyn, H., Mandryk, S. and Lushchak, O. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions. Arch. Biochem. Biophys. 441 (2005) 35-40.
  • 15. Grzelak, A., Soszynski, M. and Bartosz, G. Inactivation of antioxidant enzymes by peroxynitrite. Scand. J. Clin. Lab. Invest. 60 (2000) 253-258.
  • 16. Misra, H.P. and Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247 (1972) 3170-3175.
  • 17. Akerboom, T.P. and Sies, H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol. 77 (1981) 373-382.
  • 18. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1951) 265- 275.
  • 19. Ronne, H. Glucose repression in fungi. Trends Genet. 11 (1995) 12-17.
  • 20. Bartosz, G. Limitations and pitfalls of the use of spectroscopic probes for the detection of reactive oxygen species. Clin. Chim. Acta 368 (2006) 53-76.
  • 21. Wrona, M., Patel, K. and Wardman, P. Reactivity of 2',7'- dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals. Free Radic. Biol. Med. 38 (2005) 262-270.
  • 22. Jakubowski, W. and Bartosz, G. 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol. Int. 24 (2000) 757-760.
  • 23. Bartosz, G. Use of spectroscopic probes for detection of reactive oxygen species. Clin. Chim. Acta 368 (2006) 53-76.
  • 24. Bito, A., Haider, M., Hadler, I. and Breitenbach, M. Identification and phenotypic analysis of two glyoxalase II encoding genes from Saccharomyces cerevisiae, GLO2 and GLO4, and intracellular localization of the corresponding proteins. J. Biol. Chem. 272 (1997) 21509-21519.
  • 25. Schafer, F.Q. and Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30 (2001) 1191-1212.
  • 26. Drakulic, T., Temple, M.D., Guido, R., Jarolim, S., Breitenbach, M., Attfield, P.V. and Dawes, I.W. nvolvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 5 (2005) 1215-1228.
  • 27. Grant, C.M., Perrone, G. and Dawes, I.W. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 253 (1998) 893-898.
  • 28. Xu, B.E., Skowronek, K.R. and Kurjan, J. The N terminus of Saccharomyces cerevisiae Sst2p plays an RGS-domain-independent, Mpt5pdependent role in recovery from pheromone arrest. Genetics 159 (2001) 1559-1571.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2e36ceb1-de68-42b6-a52f-a4a4131812c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.