PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 53 | 2 |

Tytuł artykułu

Classes and functions of Listeria monocytogenes surface proteins

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Listeria monocytogenes is an opportunistic pathogen that causes infections collectively termed listeriosis, which are related to the ingestion of food contaminated with these gram-positive rods. The pathogenicity of L. monocytogenes is detennined by the following virulence factors: listeriolysin O, protein ActA, two phospholipases C, internalins (InlA and InlB), protein CwhA and a metalloprotease. The bacterium is a model organism in studies on the pathogenesis of intracellular parasites. It is able to penetrate, multiply and propagate in various types of eukaryotic cells and is also able to overcome the three main barriers encountered in the host: the intestinal barrier, the blood-brain barrier and the placenta. Based on L. monocytogenes genome sequence analysis 133 surface proteins have been identified. In particular, the large number of proteins covalently bound to murein sets L. monocytogenes apart from other gram-positive bacteria. The ability of this pathogen to multiply in various environments as well as the possibility of its interaction with many kinds of eukaryotic cells is, in fact, made possible by the large number of surface proteins.

Wydawca

-

Rocznik

Tom

53

Numer

2

Opis fizyczny

p.75-88,fig.,ref.

Twórcy

autor
  • Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland

Bibliografia

  • Alvarez-Dominguez C, J.A. Vazquez-Boland, E. Carrasco-Marin, P. Lopez-Mato and F. Leyva-Cobian. 1997. Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect. Immun. 65: 78-88.
  • Aliprantis A.O., R.B. Yang, M.R. Mark, S. Suggett, B. Devaux, J.D. Radolf, G.R. Klimpel, P. Godowski and A. Zychlinsky. 1999. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285: 736-739.
  • Autret N., I. Dubail, P. Trieu-Cuot, P. Berche and A. Charbit. 2001. Identification of new genes involves in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect. Immun. 69: 2954-2065.
  • Baba T. and O. Schneewind. 1998. Targeting of muralytic enzymes to the cell divsion site of Gram-positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus. EMBOJ. 17: 4639-4646.
  • Bierne H. and P. Cossart. 2002. InlB, a surface protein of Listeria monocytogenes that behaves as an invasion and growth factor. J. Cell Science 115: 3357-3367.
  • Bierne H., C. Garandeau, M.G. Pucciarelli, C. Sabet, S. Newton, F. Garcia-Del Portillo, P. Cossart and A. Charbit. 2004. Sortase B, a New Class of Sortase in Listeria monocytogenes. J. Bacteriol. 186: 1972-1982.
  • Bockmann R., C. Dickneite, W. Goebel and J. Bohne. 2000. PrfA mediates specific binding of RNA polymerase of Listeria monocytogenes to PrfA-dependent virulence gene promoters resulting in a transcriptionally active complex. Mol. Microbiol. 36: 487-497.
  • Borezee E., E. Pellegrini, J.L. Beretti and P. Berche. 2001. SvpA, a novel surface virulence-associated protein required for intracellular survival of Listeria monocytogenes. Microbiology 147: 2913-2923.
  • Braun L. and P. Cossart. 2000. Interactions between Listeria monocytogenes and host mammalian cells. Micro. Infect. 2: 803-811.
  • Buchrieser C. and Ch. Rusniok. 2003. The Listeria Consortium, Kunst F., Cossart P., Glaser P.: Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: clues for evolution and pathogenicity. FEMS Immun. Med. Microbiol. 35: 2007-213.
  • Cabanes D., P. Dehoux, O. Dussurget, L. Frangeul and P. Cossart. 2002. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends in Microbiol. 5: 238-245.
  • Chakraborty T., T. Hain and E. Domann. 2000. Genome organization and the evolution of the virulence gene locus in Listeria species. Int. J. Med. Microbiol. 290: 167-174.
  • Cossart P. and R. Jonquieres. 2000. Sortase, a universal target for therapeutic agents against Gram-positive bacteria? Commentary. PNAS 10: 5013-5015.
  • Cossart P. and M. Lecuit. 1998. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 17: 3797-3806.
  • Cossart P., J. Pizarro-Cerda and M. Lecuit. 2003. Invasion of mammalian cells by Listeria monocytogenes: Functional mimicry to subvert cellular functions. Trends in Cell Biol. 1: 23-31.
  • Cossart P. 2002. Molecular and cellular basis of the infection by Listeria monocytogenes, an overview. Int. J. Med. Microbiol. 291: 401-109.
  • Dabiri G.A., J.M. Sanger, D.A. Portnoy and F.S. Southwick. 1990. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc. Natl. Acad Sci. USA. 87: 6068-6072.
  • Dhar G., K.F. Faull and O. Schneewind. 2000. Anchor structure of cell wall surface proteins in Listeria monocytogenes. Biochemistry 39: 3725-3733.
  • Dramsi S., P. Dehoux, M. Lebrun, L. Goossens and P. Cossart. 1997. Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD. Infect. Immun. 65: 1625-1625.
  • Dramsi S. and P. Cossart. 2002. Listeriolysin O: a genuine cytolysin optimized for an intracellular parasite. J. Cell Biol. 156: 943-6.
  • Engelbrecht F., C. Dickneite, R. Lampidis, M. Götz, U. Das Gupta and W. Goebel. 1998. Sequence comparison of the chromosomal regions encopassing the internalin C genes (inlC) of Listeria monocytogenes and L. ivanovii. Mol. Gen. Genet. 257: 186-197.
  • Farber J.M. 1991. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55: 476-511.
  • Finlay B.B. and P. Cossart. 1997. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276: 718-725.
  • Fischetti V.A., V. Pancholi and O. Schneewind. 1990. Conservation of a hexapeptide sequence in the anchor region of surface proteins from Gram-positive cocci. Mol. Microbiol. 4: 1603-1605.
  • Garandeau C, H. Reglier-Poupet, I. Dubail, J.L. Beretti, P. Berche and A. Charbit. 2002. The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence. Infect. Immun. 70: 82-90.
  • Glaser P. and The Listeria Consortium. 2001. Comparative Genomics of Listeria species. Science 294: 849-852.
  • Heilmann Ch., G. Thumm, G.S. Chhatwal, J. Hartleib, A. Uekötter and G. Peters. 2003. Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiol. 149: 2769-2778.
  • Himmelreich R., H. Hilbert, H. Plagens, E. Pirkl, B.C. Li and R. Herrmann. 1996. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24: 4420-4449.
  • Hof H., T. Nichterlein and M. Kretschmar. 1997. Management of listeriosis. Clin. Microbiol. Rev. 10: 345-357.
  • Huan Y. and J. van Adelsberg. 1999. Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J. Clin. Invest. 104: 1459-1468.
  • Ilangovan U., H. Ton-That, J. Iwahara, O. Schneewind and R.T. Clubb. 2001. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proc. Natl. Acad Sci. USA. 98: 6056-6061.
  • Jacquet C, E. Gouin, D. Jeannel, P. Cossart and J. Rocourt. 2002. Expression of ActA, Ami, InlB, and listeriolysin O in Listeria monocytogenes of human and foof origin. Appl. Environ. Microbiol. 68: 6616-22.
  • Jones E.M. and A.P. MacGowan. 1995. Antimicrobial chemotherapy of human infection due to Listeria monocytogenes. Eur. J. Clin. Microbiol. Infect. Dis. 14: 165-175.
  • Jonsson I.M., S.K. Mazmanian, O. Schneewind, T. Bremell and A. Tarkowski. 2003. The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Microbes Infect. 5: 775-780.
  • Jonquieres R., H. Bierne, F. Fiedler, P. Gounon and P. Cossart. 1999. Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol. Microbiol. 34: 902-914.
  • Jonquieres R., H. Bierne, J. Mengaud and P. Cossart. 1998. The inlA gene of Listeria monocytogenes LO28 harbors a nonsense mutation resulting in release of internalin. Infect. Immun. 7: 3420-3422.
  • Kajava A. and B. Kobe. 2002. Assessment of the ability to model proteins with leucine-rich repeats in light of the latest structural information. Protein Science 11: 1082-1090.
  • Kunst F., N. Ogasawara and I. Moszer et al. 1997.The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249-256.
  • Kuroda M., T. Ohta and I. Uchiyama et al. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357: 1225-1240.
  • Lecuit M., S. Vandormael-Pournin, J. Lefort, M. Huerre, P. Gounon, C. Dupuy, C. Babinet and P. Cossart. 2001. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292: 1722-1725.
  • Lecuit M., S. Dramsi, C. Gottardi, M. Fedor-Chaiken, B. Gumbiner and P. Cossart. 1999. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18: 3956-3963.
  • Lecuit M., H. Ohayon, L. Braun, J. Mengaud and P. Cossart. 1997. Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect. Immun. 65: 5309 -5319.
  • Lorber B. 1997. Listeriosis. Clin. Infect. Dis. 24: 1-11.
  • MacGowan A.P., M. Wootton, K. Bowker, H.A. Holt and D. Reeves. 1998. Ampicillin-aminoglycoside interaction studies using Listeria monocytogenes. J. Antimicrob. Chemother. 41: 417-418.
  • Marino M., M. Banerjee, R. Jonquieres, P. Cossart and P. Ghosh. 2002. GW domains of the Listeria monocytogenes invasion Protein InlB are SH3-like and mediate binding to host ligands. EMBO J. 21: 5623-34.
  • Merle-Melet M., L. Dossou-Glete, P. Maurer, P. Meyer, A. Lozniewski, O. Kuntzburger, M. Weber and A. Gerard. 1996. Is amoxicillin-cotrimoxasole the most appropriate antibiotic regiment for Listeria meningoencephalitis. Review of 22 cases and the literature. J. Infect. 33: 79-85.
  • Navarre W.W. and O. Schneewind. 1999. Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63: 174-229.
  • Oshida T, M. Sugai, H. Komatsuzawa, Y-M. Hong, H. Suginaka and A. Tomasz. 1995. A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-ß-N-acetylglicosaminidase domain: cloning, sequence analysis and charaterization. Proc. Natl. Acad Sci. USA. 92: 285-289.
  • Park J.H., YS. Lee, Y.K. Lim, S.H. Kwon, C.U. Lee and B.S. Yoon. 2000. Specific binding of recombinant Listeria monocytogenes p60 protein to Caco-2 cells. FEMS Microbiol. Lett. 186: 35-40.
  • Paterson G.K. and T.J. Mitchell. 2004. The biology of Gram-positive sortase enzymes.Trends Microbiol. 12: 89-95.
  • Pilgrim V, A. Kolb-Maurer, L. Gentschev, W. Goebel and M. Kuhn. 2003. Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and los of actin-based motility. Infect. Immun. 71: 3473-3484.
  • Pistor S., T. Chakraborty, U. Walter, J. Wehland. 1995. The bacterial actin nucleator protein ActA of Listeria monocytogenes contains multiple binding sites for host microfilament proteins. Curr. Biol. 5: 517-525.
  • Portnoy D.A., V. Auerbuch and I.J. Glomski. 2002. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol. 3: 409-414.
  • Portnoy D.A., T. Chakraborty, W. Goebel and P. Cossart. 1992. Molecular determinants of Listeria monocytogenes pathogenesis. Infect. Immun. 60: 1263-1267.
  • Raffelsbauer D., A. Bubert, F. Engelbrecht, J. Scheinpflug, A. Simm and J. Hess. 1998. The gene cluster inlC2DE of Listeria monocytogenes contains additional new internalin genes and is important for virulence in mice. Mol. Gen. Genet. 260: 144-158.
  • Sanderson S., D.J. Campbell and N. Shastri. 1995. Identification of a CD4+T cell-stimulating antigen of pathogenic bacteria by expression cloning. J. Exp. Med. 182: 1751-1757.
  • Schlech W.F. 2000. Foodborne listeriosis. Clin. Infect. Dis. 31: 770-5.
  • Schubert K., A.M. Bichlmaier, E. Mager, K. Wolff, G. Ruhland and F. Fiedler. 2000. P45, an extracellular 45 kDa protein of Listeria monocytogenes with similarity to protein p60 and exhibiting peptidoglycan lytic activity. Arch. Microbiol. 173: 21-28.
  • Schubert W-D., C. Urbanke, T. Ziehm, V. Beier, M.P. Machner, E. Domann, J. Wehland, T. Chakraborty and D.W. Heinz. 2002. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 111: 825-836.
  • Shankar V., A.S. Baghdayan, M.M. Huycke, G. Lindahl and M.S. Gilmore. 1999. Infection-derived Entero-coccus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect. Immun. 67: 193-200.
  • Shen Y., M. Naujokas, M. Park and K. Ireton. 2000. InlB-dependent internalisation of Listeria is medited by the Met receptor tyrosine kinase. Cell 27: 501-510.
  • Smith G.A., H. Marquis, S. Jones, N.C. Johnston, D.A. Portnoy and H. Goldfine. 1995. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect. Immun. 63: 4231-7.
  • Temple M.E. and M.C. Nahata. 2000. Treatment of listeriosis. Ann. Phamacother. 34: 656-61.
  • Teuber M. 1999. Spread of antibiotic resistance with food-borne pathogens. Cell Mol. Life Sci. 56: 75-63.
  • Ton-That H., G. Liu, S.K. Mazmanian, K.F. Faull and O. Schneewind. 1999. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad Sci. USA. 96: 12424-12429.
  • Vazquez-Boland J.A., M. Kuhn, P. Berche, T. Chakraborty, G. Dominguez-Bernal, W. Goebel, B. Gonzales-Zorn, J. Wehland and J. Kreft. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14: 584-640.
  • Whisstock J.C. and A.M. Lesk. 1999. SH3 domains in prokaryotes. Trends Biochem. Sci. 24: 132-133.
  • Wiśniewski J.M. and J.E. Bielecki. 1999. Intracellular growth of Listeria monocytogenes insertional mutant deprived of protein p60. Acta Microbiol. Pol. 48: 317-329.
  • Wuenscher M.D., S. Kohler, A. Bubert, U. Gerike and W. Goebel. 1993. The tap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J. Bacteriol. 175: 3491-501.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2d790138-2359-4b3f-9c7e-e92f93a4410b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.