PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 12 | 1 |

Tytuł artykułu

Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Many polycyclic aromatic hydrocarbons (PAHs) are known to be toxic and carcinogenic for humans, and their contamination of soils and aquifers is of great environmental concern. Some microorganisms, mainly from the genera Pseudomonas and Mycobacterium, were found to be capable of transforming and degrading PAHs. These abilities may be useful in removal of PAHs from the environment. The successful application of bacteria to the bioremediation of PAH-contaminated sites requires a deeper understanding of how microbial PAH degradation proceeds. In this review, the bacteria involved and the metabolic pathways for the degradation of many PAHs are summarized and the biological aspects of PAH bioremediation are discussed.

Wydawca

-

Rocznik

Tom

12

Numer

1

Opis fizyczny

p.15-25,fig.,ref.

Twórcy

autor
  • University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
autor

Bibliografia

  • 1. FAWELL J.K., HUNT S. The polycyclic aromatic hydrocarbons. (in) Environmental toxicology: organic pollutants. (eds. J.K. Fawell, S. Hunt) Ellis Horwood, West Susex, pp 241-269, 1988.
  • 2. WEIS L.M., RUMMEL A.M., MASTEN S.J., TROSKO J.E., UPHAM B.L. Bay and baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of gap junctional intercellular communication. Environ. Health Perspective,106, 17, 1998.
  • 3. MEADOR J.P., STEIN J.E., REICHERT W.L., VARANOSI U. Bioaccumulation of polycyclic aromatic hydrocarbon by marine organisms. Rev. Environ. Contam. Toxicol. 143, 79, 1995.
  • 4. SIKKEMA J., DE BONT J. A. M., POOLMAN B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 201, 1995.
  • 5. CERNIGLIA C.E. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 30, 31, 1984.
  • 6. SMITH M.R. The physiology of aromatic hydrocarbon degrading bacteria. (in) Biochemistry of microbial degradation (ed. C. Ratledge) Kluver Academic Publishers, Netherlands, pp 347-378, 1994.
  • 7. NEILSON A.H., ALLARD A.S. Microbial metabolism of PAHs and heteroarenes. (in) The handbook of environmental chemistry (ed. A.H. Neilson) vol. 3, part J, Springer-Verlag, Berlin, Heilderberg, pp 1-64, 1998.
  • 8. ANNWEILER E., RICHNOW H.H., ANTRANIKIAN G., HEBENBROCK S., GARMS C., FRANKE S., FRANCKE W., MICHAELIS W. Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the termophilic Bacillus thermoleovorans. Appl. Environ. Microbiol. 66, 518, 2000.
  • 9. DAVIES J.I., EVANS W.C. Oxidative metabolism of naphthalene by soil pseumomonads. The ring fission mechanism. Biochem. J. 91, 251, 1964.
  • 10. JEFFREY A.M., YEH H.J.C., JERINA D.M., PATEL T.R., DAVEY J.F., GOBSON D.T. Initial reactions oxidation of naphthalene by Pseudomonas putida. Biochemistry 14, 575, 1975.
  • 11. DAGLEY S., GIBSON D. T. The bacterial degradation of catechol. J. Biochem. 95, 466, 1965.
  • 12. DAGLEY S. Catabolism of aromatic compounds by microorganisms. Adv. Microb. Physiol. 6, 1, 1971.
  • 13. GIBSON D.T., SUBRAMANIAN V. Microbial degradation of aromatic hydrocarbons (in) Microbial degradation of organic compounds (ed. D. T. Gibson) Marcel Dekker, Inc., New York, pp 181-252, 1984.
  • 14. KIYOHARA H., NAGAO K. The catabolism of phenanthrene and naphthalene by bacteria. J. Gen. Microbiol. 109, 69, 1978.
  • 15. YEN K.M., GUNSALUS I.C. Plasmid gene organisation: naphthalene/salicylate oxidation. Pron. Natl. Acad. Sci. 79, 874, 1982.
  • 16. CHAKRABARTY A.M. Genetic basic of the biodegradation of salicylate in Pseudomonas. J. Bacteriol. 112, 815, 1972.
  • 17. BOSCH R., GARCIA-VALDEZ E., MOORE E.R.B. Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene, 236, 149, 1999.
  • 18.BOSCH R., GARCIA-VALDEZ E., MOORE E.R.B. Complete nucleotide sequence and evolutionary significance of a chrosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene, 245, 65, 2000.
  • 19.HARAYAMA S., REKIK M., WASSERFALLEN A., BAIROCH A. Evolutionary relationships between catabolic pathways for aromatics: conservation of gene order and nucleotide sequences of catechol oxidation genes of pWW0 and NAH7 plasmids. Mol. Gen. Genet. 210, 241, 1987.
  • 20. SIMON M.J., OSSLUND T.D., SAUNDERS R., ENSLEY B.D., SUGGS S., HARCOURT A., SUEN W., CRUDEN D.L., GIBSON D.T., ZYLSTRA G.J. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene, 127, 31, 1993.
  • 21.CANE P.A., WILLIAMS P.A.A. restriction map of naphthalene catabolic plasmid pWW60-1 and the location of some of its catabolic genes. J. Gen. Microbiol. 132, 2919, 1986.
  • 22. PLATT A., SHINGLER V., TAYLOR S.C., WILLIAMS P.A. The 4-hydroxy-2-oxovalerate aldolase and acetaldehyde dehydrogenase (acylating) encoded by the nahM and nahO genes of the naphthalene catabolic plasmid pWW60-22 provide further evidence of conservation of meta-cleavage pathway gene sequences. Microbiology, 141, 2223, 1995.
  • 23. GRIFOLL M., SELIFONOV S.A., CHAPMAN P.J. Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. strain F274. Appl. Environ. Microbiol. 60, 2438, 1994.
  • 24.TRENZ S.P., ENGESSER K.H., FISCHER P., KNACKMUSS H.J. Degradation of fluorene by Brevibacterium sp. strain DPO13611: a novel C-C bond cleavage mechanism via 1,10-dihydro-11,10dihydroxyfluorene-9-one. J. Bacteriol. 176, 789, 1994.
  • 25. MONNA L., OMORI T., KODAMA T. Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Appl. Environ. Microbiol. 59, 28, 1993.
  • 26. GRIFOLL M., CASELLAS M., BAYONA J.N., SOLANAS A.M. Isolation and characterization of a fluorene-degrading bacterium: identification of ring oxidation and ring fission product. Appl. Environ. Microbiol. 58, 2910, 1992.
  • 27. CASELLAS M., GRIFOLL M., BAYONA M., SOLANAS A.M. New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101. Appl. Environ. Microbiol. 63, 819, 1997.
  • 28. EVANS W.C., FERNLEY H.N., GRIFFITHS E. Oxidative metabolism of phenenthrene and anthracene by soil pseudomonads. The ring fission mechanism. Biochem. J. 95, 819, 1965.
  • 29. DEAN-ROSS D., MOODY J.D., FREEMAN J.P., DOERGE D.R., CERNIGLIA C.E. Metabolism of anthracene by Rhodococcus species. FEMS Microbiol. Lett. 204, 205, 2001.
  • 30. MOODY J.D., FREEMAN J.P., DOERGE D.R., CERNIGLIA C.E. Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol. 67, 1476, 2001.
  • 31. KIYOHARA H., NAGAO K., KOUNO K., YANO K. Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2. Appl. Environ. Microbiol. 43, 458, 1982.
  • 32. BARNSLEY E.A. Phthalate pathway of phenanthrene metabolism: formation of 2 ' carboxybenzalpyruvate. J. Bacteriol. 154, 113, 1983.
  • 33. GHOSH D.K., MISHRA A.K. Oxidation of phenanthrene by strain of Micrococcus: evidence of protocatechuate pathway. Curr. Microbiol. 9, 219, 1983.
  • 34. KIYOHARA H., NAGAO K., NOMI R. Degradation of phenanthrene through o-phthalate in an Aeromonas sp. Agric. Biol. Chem. 40, 1075, 1976.
  • 35. MOLINA M., ARAUJO R., HODSON R.E. Cross-induction of pyrene and phenanthrene in a Mycobacterium sp. isolated from polycyclic aromatic hydrocarbon contaminated river sediments. Can. J. Microbiol. 45, 520, 1999.
  • 36. SAMANTA S.K., CHAKRABORTI A.K., JAIN R.K. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl. Microbiol. Biotechnol. 53, 98, 1999.
  • 37.PINYAKONG O., HABE H., SUPAKA N., PINPANICHKARN P., JUNTONGJIN K., YOSHIDA T., FURIHATA K., NOJIRI H., YAMANE H., OMORI T. Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol. Lett. 191, 115, 2000.
  • 38. JERINA D.M., SELANDER H., YAGI H., WELLS M.C., DAVEY J.F., MAHADEVAN V., GIBSON D.T. Dihydrodiols from anthracene and phenanthrene. J. Am. Chem. Soc. 98, 5988, 1976.
  • 39. HOUGHTON J.E., SHANLEY M.S. Catabolic potential of pseudomonads: a regulatory perspective. (in) Biological degradation and bioremediation of toxic chemicals. (ed. G. Rasul Chaudhry) Chapman & Hall, London, pp 11-32, 1994.
  • 40. KIYOHARA H., NAGAO K. Enzymatic conversion of 1hydroxy-2-naphthoate in phenanthrene - grown Aeromonas sp. S45P1. Agric. Biol. Chem. 41, 705, 1977.
  • 41. KIYOHARA H., SUGIYAMA M., MONDELLO F.J., GIBSON D.T., YANO K. Plasmid involvement in the degradation of polycyclic aromatic hydrocarbons by a Beijerinckia species. Biochem. Biophys. Res. Commun. 111, 939, 1983.
  • 42. KIYOHARA H., TAKIZAWA N., DATE H., TORIGOE S., YANO K. Characterization of a phenenthrene degradation plasmid from Alcaligenes faecalis AFK2. J. Ferment. Bioeng. 69, 54, 1990.
  • 43. DAGHER F., DEZIEL E., LIRETTE P., PAQUETTE G., BISAILLON J.G., VILLEMUR R. Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can. J. Microbiol. 43, 368, 1997.
  • 44. GOYAL A.K., ZYLSTRA G.J. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl. Environ. Microbiol. 62, 230, 1996.
  • 45.REHMANN K., HERKORN N., KETTRUP A.A. Fluoranthene metabolism in Mycobacterium sp. strain KR20: identity of pathway intermediates during degradation and growth. Microbiology, 147, 2783, 2001.
  • 46. MAHAFFEY W.R., GIBSON D.T., CERNIGLIA C.E. Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz[a]anthracene. Appl. Environ. Microbiol. 54, 2415, 1988.
  • 47. SCHNEIDER J., GROSSER R., JAYASHIMUHULU K., XUE W., WARSHAWSKY D. Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl. Environ. Microbiol. 62, 13, 1996.
  • 48. HEITKAMP M.A., FREEMAN J.P., MILLER D.W., CERNIGLIA C.E. Pyrene degradation by Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl. Environ. Microbiol. 54, 2556, 1988.
  • 49. GROSSER R.J., WARSHAWSKY D., VESTAL J.R. Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl. Environ. Microbiol. 57, 3462, 1991.
  • 50. DEAN-ROSS D., CERNIGLIA C.E. Degradation of pyrene of Mycobacterium flavescens. Appl. Microbiol. Biotechnol. 46, 307, 1996.
  • 51. REHMANN K., NOLL H.T., STEINBERG C.E., KETTRUP A.A. Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere, 36, 2977, 1998.
  • 52. WALTER U., BEYER M., KLEIN J., REHM H.J. Degradation of pyrene by Rhodococcus sp. UW1. Appl. Microbiol. Biotechnol. 34, 671, 1991.
  • 53. VILA J., LOPEZ Z., SABATE J., MINGUILLON C., SOLANAS A.M., GRIFOLL M. Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 67, 5497, 2001.
  • 54. KAZUNGA CH., AITKEN M.D. Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Appl. Environ. Microbiol. 66, 1917, 2000.
  • 55. HARAYAMA S. Polycyclic aromatic hydrocarbon bioremediation design. Curr. Opinion Biotechnol. 8, 268, 1997.
  • 56. KAMIYA A., OSE Y. Mutagenic activity and PAH analysis in municipal incinerators. Sci. Total Environ. 61, 37, 1987
  • 57. KÄSTNER M., BREUER-JAMMALI M., MAHRO B. Enumeration and characterisation of the soil microflora hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl. Microbiol. Biotechnol. 41, 267, 1994.
  • 58. KANALY R.A., HARAYAMA S. Biodegradation of highmolecular weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182, 2059, 2000.
  • 59. WILSON S.C., JONES K.C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ. Pollut. 81, 229, 1993.
  • 60. LI C.T., ZHAUNG H.K., HSIEH L.T., LEE W.J., TSAO M.C. PAH emission from the incineration of three plastic wastes. Environ. Internat. 27, 61, 2001.
  • 61. SHUTTLEWORTH K.L., CERNIGLIA C.E. Environmental aspects of PAH biodegradation. Appl. Biochem. Biotechnol. 54, 291, 1995.
  • 62. FOGHT J.M., WESTLAKE D.W.S. Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas sp. Can. J. Microbiol. 34, 1135, 1988.
  • 63. BOGARDT A.H., HEMMINGSEN B.B. Enumeration of phenanthrene-degrading bacteria by an overlayer technique and its use in evaluation of petroleum-contaminated sites. Appl. Environ. Microbiol. 58, 2579, 1992.
  • 64. CERNIGLIA C.E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351, 1992.
  • 65. LEE P.H., ONG S.K., GOLCHIN J., NELSON G.L. Use of solvents to enhance PAH biodegradation of coal tarcontaminated soils. Wat. Res. 35, 3941, 2001.
  • 66. COATES J.D., ANDERSON R.T., LOVLEY D.R. Oxidation of polycyclic aromatic hydrocarbons under sulphate-reducing conditions. Appl. Environ. Microbiol. 62, 1099, 1996.
  • 67. COATES J.D., WOODWARD J., ALLEN J., PHILPH P, LOVLEY D.R. Anaerobic degradation of polycyclic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediment. Appl. Environ. Microbiol. 63, 3589, 1997.
  • 68. TIEHM A. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60, 258, 1994.
  • 69. VOLKERING F., BREURE A.M., ANDEL J.G., RULKENS W.H. Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 61, 1699, 1995.
  • 70. GRINMBERG S.J., STRINGFELLOW W.T., AITKEN M.D. Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of nonionoc surfactant. Appl. Environ. Microbiol. 62, 2387, 1996.
  • 71. THIBAULT S.L., ANDERSON M., FRANKENBERGER W.T Jr. Influence of surfactans on pyrene desorption and degradation in soils. Appl. Environ. Microbiol. 62, 283, 1996.
  • 72. YUAN S.Y., WEI S.H., CHANG B.V. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere, 41, 1463, 2000.
  • 73. MYERS D. Surfaces, interfaces, and colloids: principles and applications. VCH Publishers, Inc., New York, 1991.
  • 74. TADROS M.G., HUGHES J.B. Degradation of polycyclic aromatic hydrocarbons (PAHs) by indigenous mixed and pure cultures isolated from coastal sediments. Appl. Biochem. Biotechnol. 63-65, 865, 1997.
  • 75. BOUCHEZ M., BLANCHET D., VANDECASTEELE J.P. Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl. Microbiol. Biotechnol. 43, 156, 1995.
  • 76. ARANHA H.G., BROWN L.R. Effect of nitrogen source on end products of naphthalene degradation. Appl. Environ. Microbiol. 42, 74, 1981.
  • 77. BREEDVELD G. D., SPARREVIK M. Nutrient-limited biodegradation of PAH in various soil strata a creosate contaminated soil site. Biodegradation, 11, 391, 2000.
  • 78. EATON R.W., CHAPMAN P.J. Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J. Bacteriol. 174, 7542, 1992.
  • 79. SAYLER G. S., RIPP S. Field applications of genetically engineered microorganisms for bioremediation processes. Curr. Opinion Biotechnol. 11, 286, 2000.
  • 80. SAYLER G.S., COX C.D., BURLAGE R., RIPP S., NIVENS D.E., WERNER C., AHN Y., MATRUBUTHAM U. Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control. (in) Novel approaches for bioremediation of organic pollution. (eds. R. Fass, Y. Flashner, S. Reuveny) New York, Kluwer Academic/Plenum Publishers, pp 241-254, 1999.
  • 81. COX C.D., NIVENS D.E., RIPP S.A., WONG M.M., PALUMBO A., BURLAGE R.S., SAYLER G.S. An Intermediate-scale lysimeter facility for subsurface bioremediation. Bioremediation, 4, 69, 2000.
  • 82. RIPP S., NIVENS D.E., AHN Y., WERNER C., JARREL J., EASTER J.P., COX C.D., BURLAGE R.S., SAYLER G.S. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ. Sci. Technol. 34, 846, 2000.
  • 83.HAMANN H., HEGEMANN J., HILDEBRANDT A. Detection of polycyclic aromatic hydrocarbon genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol. Lett., 173, 255, 1999.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2cbcfe11-5bf4-4e37-9619-44f9f172639c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.