PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 46 | 3 |

Tytuł artykułu

Nitric oxide mediates the mitogenic effects of insulin and vascular endothelial growth factor but not of leptin in endothelial cells

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The regulation of vascular wall homeostasis by nitric oxide (NO) generated by endothelium is being intensively studied. In the present paper, the involvement of NO in the vascular endothelial growth factor (VEGF), insulin or leptin-stimulated proliferation of human endothelial cells (HUVEC) was measured by [3H]thymidine or bromodeoxyuridine incorporation. VEGF and insulin, but not leptin, increased NO generation in HUVEC, as detected with ISO-NO electrode. Proliferation of HUVEC induced by leptin was not changed or was higher in the presence of L-Nω-nitro-L-arginine methyl ester (L-NAME) a nitric oxide synthase (NOS) inhibitor. In contrast, L-NAME blunted the proproliferative effect of VEGF and insulin. Furthermore, we demonstrated that, in human arterial smooth muscle cells (hASMC) transfected with endothelial NOS (eNOS) gene, the generation of biologically active VEGF protein was NO-dependent. Inhibition of NO generation by L-NAME decreased the synthesis of VEGF protein and attenuated HUVEC proliferation induced by conditioned media from transfected hASMC. Endothelium-derived NO seems to participate in VEGF and insulin, but not leptin, mitogenic activity. Additionally, the small amounts of NO released from endothelial cells, as mimicked by eNOS transfection into hASMC, may activate generation of VEGF in sub-endothelial smooth muscle cells, leading to increased synthesis of VEGF protein necessary for turnover and restitution of endothelial cells.

Wydawca

-

Rocznik

Tom

46

Numer

3

Opis fizyczny

p.703-715,fig.

Twórcy

autor
  • Jagiellonian University School of Medicine, M.Kopernika 15a, 31-501 Krakow, Poland
autor
autor
autor
autor

Bibliografia

  • 1. Ware, J.A. & Simons, M. (1997) Angiogenesis in ischemic heart disease. Nature Medicine 3, 158-164.
  • 2. Fan Tai-Ping, D., Jaggar, R. & Bicknell, R. (1995) Controlling the vasculature: Angio­genesis, anti-angiogenesis and vascular target­ing of gene therapy. Trends Pharmacol Sci. 16, 57-66.
  • 3. Risau, W. (1997) Mechanisms of angiogenesis. Nature 386, 671-674.
  • 4. Tzeng, E., Shears II, L.L., Robbins, P.D., Pitt, B.R., Geller, G.A., Watkins, S.C., Simmons, R.L. & Billiar, TH. (1996) Vascular gene trans­fer of the human inducible nitric oxide syn­thase: Characterization of activity and effects on myointimal hyperplasia. MoL Medicine 96, 1976-1551.
  • 5. Baumgartner, I., Pieczek, A., Manor, O., Blair, R., Kearney, M., Walsh, K. & Isner, J.M. (1998) Constitutive expression of phVEGFi65 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97, 1114-1123.
  • 6. Neufeld, G., Cohen, T., Gengrynowitch, S. & Poltorak, Z. (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9-22.
  • 7. Ku, D.D., Zaleski, J.K., Liu, S. & Brock, T.A. (1993) Vascular endothelial growth factor in­duces EDRF-dependent relaxation in coronary arteries. Am. J. Physiol. 265, H586-H592.
  • 8. Morbideili, L., Chang, C.H., Douglas, J.G., Granger, H.J., Ledda, F. & Ziche, M. (1996) Ni­tric oxide mediated mitogenic effect of VEGF on coronary venular endothelium. Am. J. Physiol 270, H411-H415.
  • 9. van der Zee, R., Murohara, T., Luo, Z., Zollman, F., Passeri, J., Lekutat, C. & Isner, J.M. (1997) Vascular endothelial growth fac­tor/vascular permeability factors augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation 95, 1030-1037.
  • 10. Malinski, T. (1998) Normal and pathological distribution of nitric oxide in the cardiovascu­lar system. Pol. J. Pharmacol 50, 387-391.
  • 11.Forsterman, U., Nakane, M., Tracey, W.R. & Pollock, J.S. (1993) Isoforms of nitric oxide synthase: Functions in the cardiovascular sys­tem. Eur. Heart J. 14 (Supl. 1), 10-15.
  • 12. Messmer, U.K. & Brune, B. (1996) Nitric oxide induced apoptosis: p53 Dependent and p53-in- dependent signaling pathways. Biochem. J. 319, 299-305.
  • 13. Meßmer, U.K., Ankarcrona, M., Nicotera, P. & Brüne, B. (1994) P53 expression in nitric ox­ide induced apoptosis. FEBS Lett. 335,23-26.
  • 14. Kim, Y.M., Talanian, R.V. & Billiar, T.R. (1997) Nitric oxide inhibits apoptosis. J. Biol. Chem. 272, 1402-1411.
  • 15.Mannick, J.B., Miao, X.Q. & Stamler, J.S. (1997) Nitric oxide inhibits Fas-induced apo­ptosis. J. Biol Chem. 272, 24125-24128.
  • 16. Papapetropoulos, A., Garcia-Cardena, A.G., Madri, J .A. & Sessa, W.C. (1997) Nitric oxide production contributes to the angiogenic prop­erties of vascular endothelial growth factor in human endothelial cells. J. Clin. Invest. 100, 3131-3139.
  • 17. Ziche, M., Morbideili, L., Massini, E., Amerini, S., Granger. H.J., Maggi, C.A., Geppetti, P. & Ledda, F. (1994) Nitric oxide mediates angio­genesis in vivo and endothelial cell growth and migration in vitro prompted by substance P. J. Clin. Invest. 94, 2036-2044.
  • 18. Pilipi-Synetos, E., Sakkoula, E. & Maragou- dakis, M.E. (1993) Nitric oxide is involved in the regulation of angiogenesis. Br. J. Phar­macol 108, 855-857.
  • 19. Sierra-Honigmann, A., Nath, A.K., Murakami, C., Garcia-Cardena, G., Papapetropoulos, A., Sessa, W.C., Madge, L.A., Schechner, J.S., Schwabb, M.B., Polverini, P.J. & Flores- Riveros, J.R. (1998) Biological action of leptin as an angiogenic factor. Science 281, 1683- 1686.
  • 20. Rios, M.S. (1998) Relationship between obe­sity and the increased risk of major complica­tions in nor.-insulin-dependent diabetes mel­litus. Eur. J. Cliru Invest. 28 (Suppl. 2), 14-19.
  • 21. Holmäng, A., Jennishe, E. & Bjöntrop, P. (1996) Rapid formation of capillary endothe­lial cells in rat skeletal muscle after exposure to insulin. Diabetologie 39, 206-211.
  • 22. Steinberg, H.O., Brechtel, G., Johnson, A., Fineberg, N. & Baron, A.D. (1994) Insulin- me­diated skeletal muscle vasodilatation is ni­tric-oxide dependent. A novel action of insulin to increase nitric oxide release. J. Clin. Invest. 94, 1172-1179.
  • 23. Tsurumi, Y., Murohara, T., Krasinsky, K., Chen, D., Witzenbichler, B., Kearney, M., Couffinhal, T. & Isner, J.M. (1997) Reciprocal relation between VEGF and NO in the regula­tion of endothelial integrity. Nature Medicine 3, 879-886.
  • 24. Jaffe, E.A. (1973) Culture of human endothe­lial cells derived from umbilical veins. Identifi­cation by morphologic and immunologic crite­ria. J. Clin. Invest. 52, 2745-2756.
  • 25. Guevara, I., Iwanejko, J., Dembińska-Kieć, A., Pankiewicz, J., Wanat, A., Polus, A., Gołąbek, I., Bartuś, S., Malczewska-Melec, M. & Szczu- dlik, A. (1998) Determination of nitrite/ni­trate in human biological material by simple Griess reaction. Clin. Chim. Acta 274, 177- 188.
  • 26. Tsukahara, H., Gordienko, D., Tonschoff, B., Gelato, M.C. & Goligorsky, M. (1994) Direct demonstration of insulin-like growth factor-1 induced nitric oxide production by endothelial cells. Kidney Int. 45, 598-604.
  • 27. Misco, T., Schilling, R.J., Salvemini, D., Moore, W.M., Currie, M.G. (1993) A fluoro- metric assay for the measurement of nitrite in biological samples. Anal Biochem. 214, 11-16.
  • 28. Lopez-Farre, A., Sanchez de Miguel, S., Car- melo, C., Gomez-Macias, J., Garcia, S., Mo8quera, J.R., DeFrutos, D., Millas, I., Rivas, F., Echezarreta, G. & Casado, S. (1997) Role of nitric oxide in autocrine control of growth and apopto8is of endothelial cell. Am. J. Physiol. 272, H760-H768.
  • 29. Ziehe, M., Morbidelli, L., Masini, E., Granger, H., Geppeti, P. & Ledda, F. (1993) Nitric oxide promotes DNA synthesis and cGMP formation in endothelial cells from postcapilary venules. Biochem. Biophys. Res. Commun. 192, 1198- 1203.
  • 30. Schwartz, L.M. & Osborne, B.A. (1993) Pro­grammed cell death apoptosis and killer genes. Immunol Today 14, 582-590.
  • 31. Evans, G.L.& Littlewood, T.D. (1993) The role of c-myc in cell growth. Cutt. Opin. Genet Dev. 3, 44-49.
  • 32. Sankar, S., Mohooti-Broks, N., McCarthy, T.L., Centrella, M. & Madri, J.A. (1996) Modu­lation of transforming growth factor ß recej>- tor levels on microvascular endothelial cells during in vitro angiogenesis. J. Clin. Invest. 97, 1436-1446.
  • 33. Madri, J.A. & Marx, M. (1992) Matrix compo­sition, organization and soluble factors: Modulation of microvascular cell differentia­tion in vitro. Kidney InL 41, 560-565.
  • 34. Esser, S., Wolburg, K., Wolburg, H., Breier, G. & Kurzchalia, T. (1998) Vascular endothe­lial growth factor induces endothelial fenestra­tion in vitro. J. Cell Biol. 140, 947-959.
  • 35. Nori, E., Lee, E., Testa, J., Quigley, J., Col- flesh, D., Reese, C.R., Giaever, I. & Goli­gorsky, M.S. (1998). Podokinesis in endothe­lial cell migration: Role of nitric oxide. Am. J. Physiol. 274, C236-C244.
  • 36. Pepper. M.S., Ferrara, N.. Orci, L. & Monte- sano, R. (1991) Vascular endothelial growth factor ( VEGF) induces plasminogen activa­tors and plasminogen activator inhibitor-1 in microvascular endothelial cell. Biochem. Bio­phys. Res. Commun. 181, 902-906.
  • 37. Katoh, 0., Tauchi, K., Kawaishi, K., Kimura, A. & Satow, Y. (1995) Expression of the vascular endothelial growth factor (VEGF) receptor gene KDR in hematopoietic cells and inhibi­tory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res. 55, 5687-5692.
  • 38. Lindner, V. & Reidy, M.A. (1996) Expression of VEGF receptors in arteries after endothe­lial injury and lack of increased endothelial regrowth in response to VEGF. Arterioscler. Thromb. Vase. Biol 16, 1399-1405.
  • 39. Thomas, K.A. (1996) Vascular endothelial growth factor, a potent and selective angio­genic agent J. Biol Chem. 271, 603-606.
  • 40. Pu, X., Aiello, L.P., Ishii, H., Jiang, Z.Y., Park, D.J., Robinson, G.S., Takagi, H., Newsome, W.P., Jirousek, J. & King, G.L. (1996) Charac­terization of vascular endothelial growth fac­tor's effect of activation of protein kinase C, its isoforms and endothelial cell growth. J. Clin. Invest 98, 2018-2026.
  • 41. Ziche, M., Morbidelli, L., Choudhuri, R., Zhang, H.T., Donnini, S. & Granger, H.J. (1997) Nitric oxide synthase lies downstream from vascular endothelial growth factor-in- duced, but not basic fibroblast growth fac­tor-induced angiogenesis. J. Clin. Invest. 99, 2625-2634.
  • 42. Pierce, R.L., Pierce, M.R., Liu, H., Kadowitz, PJ., Miller, M.J.S. (1995) Limb reduction af­ter prenatal inhibition of nitric oxide synthase in rats. Pediatr. Res. 38, 905-911.
  • 43. Noiri, E., Hu, Y., Bahou, W.F., Keese, C.R., Giaever, I. & Goligorsky, M.S. (1997) Permis­sive role of nitric oxide in endothelin-induced migration of endothelial cells. J. Biol. Chem. 272, 1747-1752.
  • 44. Re, F., Zanetti, A., Sironi, M., Polentarutti, N., Lanfrancone, L., Dejana, E. & Colotta, F. (1994) Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured hu­man endothelial cells. J. Cell Biol. 127, 537-546.
  • 45. Schwartz, MA. (1993) Spreading of human endothelial cells on fibronectin or vitronectin triggers elevation of intracellular free calcium. J. Cell Biol 120, 1005-1010.
  • 46. Gamble, J.R., Matthias, LJ., Meyer, G., Kaur, P., Russ, G., Faull, R., Berndt M.C. & Vadas, M.A. (1993) Regulation of in vivo capillary tube formation by anti-integrin antibodies. J. Cell Biol. 121, 931-943.
  • 47. Zeng, G. & Quon, M.J. (1996) Insulin- stimu­lated production of nitric oxide is inhibited by wortmannin. Direct measurement in endothe­lial cells. J. Clin. Invest. 98, 894-898.
  • 48. Oikawa, T. & Shimamura, M. (1996) Potent in­hibition of angiogenesis by wartmannin, a fun­gal metabolite. Eur. J. Pharmacol. 318, 6465- 6470.
  • 49. Parenti, A., Morbidelli, L., Cui, X.L., Douglas, J.G., Hood, J.D., Granger, H.J., Ledda, F. & Ziche, M. (1998) Nitric oxide is an upstream signal of vascular endothelial growth factor- induced extracellular signal-regulated kina­se 1/2 activation in postcapilary endothelium. J. Biol Chem. 273, 4220-4226.
  • 50. Andrade, S.P., Hart, I.R. & Piper, PJ. (1992) Inhibitors of nitric oxide synthase selectively reduce flow in tumor-associated neovascu- lature. Br. J. Pharmacol 107, 1092-1095.
  • 51. Cin, K., Kurashima, Y., Ogura, T., Tajiri, H., Yoshida, S. & Esumi, H. (1997) Induction of vascular endothelial growth factor by nitric ox­ide in human glioblastoma and hepatocellular carcinoma cells. Oncogene 15, 437-442.
  • 52. Ambs, S.. Merriam. W.G.. Bennett, W.P.. Felley-Bosco, E., Ogunfusika, M.O., Oser, S.M., Klein, S., Shields, P.G., Billiar. T.R. & Harris, C.C. (1998) Frequent nitric oxide synth ase-2 expression in human colon adeno­mas: Implication for tumor angiogenesis and colon cancer progression. Cancer Res. 58, 334-341.
  • 53. Levy, A.P., Levy, N.S., Wegner, S. & Goldberg, M.A. (1995) Transcriptional regulation of the rat vascular endothelial growth gene by hypoxia. J. Biol Chem. 270, 13333- 13340.
  • 54. Wang, G.L. & Semenza, G.L. (1993) Charac­terization of hypoxia-induced factor-1 and reg­ulation of DNA binding activity by hypoxia. J. Biol Chem. 268, 21513-21518.
  • 55.0higashi, T., Brookins, J. & Fisher, J.W. (1993) Interaction of nitric oxide and cyclic guanosine 3',5'-aminophosphate in erythro­poietin production. J. Clin. Invest. 92, 1587- 1591.
  • 56.Asahara, T., Chen, D., Tsurumi, Y., Kearney, M., Rossow, S., Passen, J., Symes, J. & Isner, J.M. (1996) Accelerated restitution of endo­thelial integrity and endothelium dependent function after phVEGF165 gene transfer. Cir­culation 94, 3291-3302.
  • 57. Tzeng, E.. Shears, L.L.. Rohbins, P.D., Pitt. B.R., Geller, D.A., Watkins, S.C., Simmons, R.L. & Billiar, T.R. (1996) Vascular gene trans­fer of the human inducible nitric oxide synthase; Characterization of activity and ef­fects of myointimal hyperplasia. Mol Medicine 2,211-225.
  • 58. von der Leyen, H.E., Gibbons, G.H., Mori- shita, R., Lewis, N.P., Zhang, L., Nakajima, M., Kaneda, Y., Cooke, J.P. & Dzau, V.J. (1995) Gene therapy inhibiting neointimal vascular lesion: In vivo transfer of endothelial cell nitric oxide synthase gene. Proc. Natl Acad. Sci. U.S.A. 92, 1137-1141.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2a8c9d8a-4235-455e-8641-2f82a373940b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.