PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 13 | 4 |

Tytuł artykułu

EHDs are serine phosphoproteins: EHD1 phosphorylation is enhanced by serum stimulation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Endocytic processes are mediated by multiple protein-protein interacting modules and regulated by phosphorylation and dephosphorylation. The Eps15 homology domain containing protein 1 (EHD1) has been implicated in regulating recycling of proteins, internalized both in clathrin-dependent and clathrin-independent endocytic pathways, from the recycling compartment to the plasma membrane. EHD1 was found in a complex with clathrin, adaptor protein complex-2 (AP-2) and insulin-like growth factor-1 receptor (IGF-1R), and was shown to interact with Rabenosyn-5, SNAP29, EHBP1 (EH domain binding protein 1) and syndapin I and II. In this study, we show that EHD1, like the other human EHDs, undergoes serine-phosphorylation. Our results also indicate that EHD1 is a serum-inducible serine-phosphoprotein and that PKC (protein kinase C) is one of its kinases. In addition, we show that inhibitors of clathrin-mediated endocytosis decrease EHD1 phosphorylation, while inhibitors of caveolinmediated endocytosis do not affect EHD1 phosphorylation. The results of experiments in which inhibitors of endocytosis were employed strongly suggest that EHD1 phosphorylation occurs between early endosomes and the endocytic recycling compartment.

Wydawca

-

Rocznik

Tom

13

Numer

4

Opis fizyczny

p.632-648,fig.,ref.

Twórcy

autor
  • Tel-Aviv University, Ramat Aviv 69978, Israel
autor
autor
autor

Bibliografia

  • 1. Wong, W.T., Kraus, M.H., Carlomagno, F., Zelano, A., Druck, T., Croce, C. M., Huebner, K. and Di Fiore, P.P. The human eps15 gene, encoding a tyrosine kinase substrate, is conserved in evolution and maps to 1p31-p32. Oncogene 9 (1994) 1591-1597.
  • 2. Slepnev, V.I., Ochoa, G.C., Butler, M.H., Grabs, D. and De Camilli, P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 281 (1998) 821-824.
  • 3. Di Fiore, P.P., Pelicci, P.G. and Sorkin, A. EH: a novel protein-protein interaction domain potentially involved in intracellular sorting. Trends Biochem. Sci. 22 (1997) 411-413.
  • 4. Santolini, E., Salcini, A.E., Kay, B.K., Yamabhai, M. and Di Fiore, P.P. The EH network. Exp. Cell Res. 253 (1999) 186-209.
  • 5. Lee, D.W., Zhao, X., Scarselletta, S., Schweinsberg, P.J., Eisenberg, E., Grant, B.D. and Greene, L. E. ATP binding regulates oligomerization and endosome association of RME-1 family proteins. J. Biol. Chem. 280 (2005) 17213-17220.
  • 6. Vetter, I.R. and Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294 (2001) 1299-1304.
  • 7. Mintz, L., Galperin, E., Pasmanik-Chor, M., Tulzinsky, S., Bromberg, Y., Kozak, C.A., Joyner, A., Fein, A. and Horowitz, M. EHD1-an EH-domaincontaining protein with a specific expression pattern. Genomics 59 (1999) 66-76.
  • 8. Pohl, U., Smith, J.S., Tachibana, I., Ueki, K., Lee, H.K., Ramaswamy, S., Wu, Q., Mohrenweiser, H.W., Jenkins, R.B. and Louis, D.N. EHD2, EHD3, and EHD4 encode novel members of a highly conserved family of EH domain-containing proteins. Genomics 63 (2000) 255-262.
  • 9. Grant, B., Zhang, Y., Paupard, M.C., Lin, S.X., Hall, D.H. and Hirsh, D. Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat. Cell Biol. 3 (2001) 573-579.
  • 10. Smith, C.A., Dho, S.E., Donaldson, J., Tepass, U. and McGlade, C.J. The Cell Fate Determinant Numb Interacts with EHD/Rme-1 Family Proteins and Has a Role in Endocytic Recycling. Mol. Biol. Cell 15 (2004) 2698- 3708.
  • 11. Blume, J.J., Halbach, A., Behrendt, D., Paulsson, M. and Plomann, M. EHD proteins are associated with tubular and vesicular compartments and interact with specific phospholipids. Exp. Cell Res. 313 (2007) 219-231.
  • 12. Galperin, E., Benjamin, S., Rapaport, D., Rotem-Yehudar, R., Tolchinsky, S. and Horowitz, M. EHD3: a protein that resides in recycling tubular and vesicular membrane structures and interacts with EHD1. Traffic 3 (2002) 575-589.
  • 13. George, M., Ying, G., Rainey, M.A., Solomon, A., Parikh, P.T., Gao, Q., Band, V. and Band, H. Shared as well as distinct roles of EHD proteins revealed by biochemical and functional comparisons in mammalian cells and C. elegans. BMC Cell Biol. 8 (2007) 3.
  • 14. Naslavsky, N. and Caplan, S. C-terminal EH-domain-containing proteins: consensus for a role in endocytic trafficking, EH? J. Cell Sci. 118 (2005) 4093-4101.
  • 15. Rapaport, D., Auerbach, W., Naslavsky, N., Pasmanik-Chor, M., Galperin, E., Fein, A., Caplan, S., Joyner, A.L. and Horowitz, M. Recycling to the plasma membrane is delayed in EHD1 knockout mice. Traffic 7 (2006) 52-60.
  • 16. Guilherme, A., Soriano, N.A., Bose, S., Holik, J., Bose, A., Pomerleau, D.P., Furcinitti, P., Leszyk, J., Corvera, S. and Czech, M.P. EHD2 and the novel EH domain binding protein EHBP1 couple endocytosis to the actin cytoskeleton. J. Biol. Chem. 279 (2004) 10593-10605.
  • 17. Daumke, O., Lundmark, R., Vallis, Y., Martens, S., Butler, P.J. and McMahon, H.T. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature 449 (2007) 923-927.
  • 18. Naslavsky, N., Rahajeng, J., Sharma, M., Jovic, M. and Caplan, S. Interactions between EHD Proteins and Rab11-FIP2: A Role for EHD3 in Early Endosomal Transport. Mol. Biol. Cell 17 (2006) 163-177.
  • 19. Shao, Y., Akmentin, W., Toledo-Aral, J.J., Rosenbaum, J., Valdez, G., Cabot, J.B., Hilbush, B.S. and Halegoua, S. Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes. J. Cell Biol. 157 (2002) 679-691.
  • 20. Sharma, M., Naslavsky, N. and Caplan, S. A role for EHD4 in the regulation of early endosomal transport. Traffic 9 (2008) 995-1018.
  • 21. Lin, S.X., Grant, B., Hirsh, D. and Maxfield, F.R. Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nat. Cell Biol. 3 (2001) 567-572.
  • 22. Picciano, J.A., Ameen, N., Grant, B. and Bradbury, N.A. Rme-1 regulates the recycling of the cystic fibrosis transmembrane conductance regulator. Am. J. Physiol. Cell Physiol. 285 (2003) 1009-1018.
  • 23. Guilherme, A., Soriano, N.A., Furcinitti, P.S. and Czech, M.P. Role of EHD1 and EHBP1 in perinuclear sorting and insulin-regulated GLUT4 recycling in 3T3-L1 adipocytes. J. Biol. Chem. 279 (2004) 40062-40075.
  • 24. Caplan, S., Naslavsky, N., Hartnell, L.M., Lodge, R., Polishchuk, R.S., Donaldson, J.G. and Bonifacino, J.S. A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. Embo J. 21 (2002) 2557-2567.
  • 25. Park, M., Penick, E.C., Edwards, J.G., Kauer, J.A. and Ehlers, M.D. Recycling endosomes supply AMPA receptors for LTP. Science 305 (2004) 1972-1975.
  • 26. Rotem-Yehudar, R., Galperin, E. and Horowitz, M. Association of insulinlike growth factor 1 receptor with EHD1 and SNAP29. J. Biol. Chem. 276 (2001) 33054-33060.
  • 27. Naslavsky, N., Rahajeng, J., Chenavas, S., Sorgen, P.L. and Caplan, S. EHD1 and Eps15 interact with phosphatidylinositols via their EH-domains. J. Biol. Chem. 282 (2007) 16612-16622.
  • 28. Naslavsky, N., Boehm, M., Backlund, P.S., Jr. and Caplan, S. Rabenosyn-5 and EHD1 interact and sequentially regulate protein recycling to the plasma membrane. Mol. Biol. Cell 15 (2004) 2410-2422.
  • 29. Braun, A., Pinyol, R., Dahlhaus, R., Koch, D., Fonarev, P., Grant, B.D., Kessels, M.M. and Qualmann, B. EHD proteins associate with syndapin I and II and such interactions play a crucial role in endosomal recycling. Mol. Biol. Cell 16 (2005) 3642-3658.
  • 30. Xu, Y., Shi, H., Wei, S., Heng Wong, S. and Hong, W. Mutually exclusive interactions of EHD1 with GS32 and Syndapin II. Mol. Membr. Biol. 21 (2004) 269-277.
  • 31. Nielsen, E., Christoforidis, S., Uttenweiler-Joseph, S., Miaczynska, M., Dewitte, F., Wilm, M., Hoflack, B. and Zerial, M. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J. Cell Biol. 151 (2000) 601-612.
  • 32. Kessels, M.M. and Qualmann, B. The syndapin protein family: linking membrane trafficking with the cytoskeleton. J. Cell Sci. 117 (2004) 3077- 3086.
  • 33. Cullis, D.N., Philip, B., Baleja, J.D. and Feig, L.A. Rab11-FIP2, an adaptor protein connecting cellular components involved in internalization and recycling of epidermal growth factor receptors. J. Biol. Chem. 277 (2002) 49158-49166.
  • 34. Steegmaier, M., Yang, B., Yoo, J.S., Huang, B., Shen, M., Yu, S., Luo, Y. and Scheller, R.H. Three novel proteins of the syntaxin/SNAP-25 family. J. Biol. Chem. 273 (1998) 34171-34179.
  • 35. Ricotta, D., Conner, S.D., Schmid, S.L., von Figura, K. and Honing, S. Phosphorylation of the AP2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J. Cell Biol. 156 (2002) 791-795.
  • 36. Wilde, A. and Brodsky, F.M. In vivo phosphorylation of adaptors regulates their interaction with clathrin. J. Cell Biol. 135 (1996) 635-645.
  • 37. Ihara, Y., Yasuoka, C., Kageyama, K., Wada, Y. and Kondo, T. Tyrosine phosphorylation of clathrin heavy chain under oxidative stress. Biochem. Biophys. Res. Commun. 297 (2002) 353-360.
  • 38. Confalonieri, S., Salcini, A.E., Puri, C., Tacchetti, C. and Di Fiore, P.P. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis. J. Cell Biol. 150 (2000) 905-912.
  • 39. Kamps, M.P. and Sefton, B.M. Acid and base hydrolysis of phosphoproteins bound to immobilon facilitates analysis of phosphoamino acids in gelfractionated proteins. Anal. Biochem. 176 (1989) 22-27.
  • 40. Boyle, W.J., van der Geer, P. and Hunter, T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201 (1991) 110-149.
  • 41. Lin, F.T., Krueger, K.M., Kendall, H.E., Daaka, Y., Fredericks, Z.L., Pitcher, J.A. and Lefkowitz, R.J. Clathrin-mediated endocytosis of the betaadrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1. J. Biol. Chem. 272 (1997) 31051-31057.
  • 42. Simonsen, A., Lippe, R., Christoforidis, S., Gaullier, J.M., Brech, A., Callaghan, J., Toh, B.H., Murphy, C., Zerial, M. and Stenmark, H. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394 (1998) 494-498.
  • 43. Jones, D.T., Ganeshaguru, K., Anderson, R.J., Jackson, T.R., Bruckdorfer, K.R., Low, S.Y., Palmqvist, L., Prentice, H.G., Hoffbrand, A.V., Mehta, A.B. and Wickremasinghe, R.G. Albumin activates the AKT signaling pathway and protects B-chronic lymphocytic leukemia cells from chlorambucil- and radiation-induced apoptosis. Blood 101 (2003) 3174- 3180.
  • 44. Heuser, J.E. and Anderson, R.G. Hypertonic media inhibit receptormediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 108 (1989) 389-400.
  • 45. Phonphok, Y. and Rosenthal, K.S. Stabilization of clathrin coated vesicles by amantadine, tromantadine and other hydrophobic amines. FEBS Lett. 281 (1991) 188-190.
  • 46. Puri, V., Watanabe, R., Singh, R.D., Dominguez, M., Brown, J.C., Wheatley, C.L., Marks, D.L. and Pagano, R.E. Clathrin-dependent and - independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J. Cell Biol. 154 (2001) 535-547.
  • 47. Arcaro, A. and Wymann, M.P. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem. J. 296 ( Pt 2) (1993) 297-301.
  • 48. Jones, A.T. and Clague, M.J. Phosphatidylinositol 3-kinase activity is required for early endosome fusion. Biochem. J. 311 (1995) 31-34.
  • 49. Li, G., D'Souza-Schorey, C., Barbieri, M.A., Roberts, R.L., Klippel, A., Williams, L.T. and Stahl, P.D. Evidence for phosphatidylinositol 3-kinase as a regulator of endocytosis via activation of Rab5. Proc. Natl. Acad. Sci. USA 92 (1995) 10207-10211.
  • 50. Sheff, D.R., Daro, E.A., Hull, M. and Mellman, I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol. 145 (1999) 123-139.
  • 51. Welsh, G.I., Griffiths, M.R., Webster, K.J., Page, M.J. and Tavare, J.M. Proteome analysis of adipogenesis. Proteomics 4 (2004) 1042-1051.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-297dda68-9758-4fd3-92d8-77eb30c8ca1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.