PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 50 | 4 |

Tytuł artykułu

Nanostructure of biogenic versus abiogenic calcium carbonate crystals

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The mineral phase of the aragonite skeletal fibers of extant scleractinians (Favia, Goniastrea) examined with Atomic Force Microscope (AFM) consists entirely of grains ca. 50–100 nm in diameter separated from each other by spaces of a few nanometers. A similar pattern of nanograin arrangement was observed in basal calcite skeleton of extant calcareous sponges (Petrobiona) and aragonitic extant stylasterid coralla (Adelopora). Aragonite fibers of the fossil scleractinians: Neogene Paracyathus (Korytnica, Poland), Cretaceous Rennensismilia (Gosau, Austria), Trochocyathus (Black Hills, South Dakota, USA), Jurassic Isastraea (Ostromice, Poland), and unidentified Triassic tropiastraeid (Alpe di Specie, Italy) are also nanogranular, though boundaries between individual grains occasionally are not well resolved. On the other hand, in diagenetically altered coralla (fibrous skeleton beside aragonite bears distinct calcite signals) of the Triassic corals from Alakir Cay, Turkey (Pachysolenia), a typical nanogranular pattern is not recognizable. Also aragonite crystals produced synthetically in sterile environment did not exhibit a nanogranular pattern. Unexpectedly, nanograins were recognized in some crystals of sparry calcite regarded as abiotically precipitated. Our findings support the idea that nanogranular organization of calcium carbonate fibers is not, per se, evidence of their biogenic versus abiogenic origin or their aragonitic versus calcitic composition but rather, a feature of CaCO₃ formed in an aqueous solution in the presence of organic molecules that control nanograin formation. Consistent orientation of crystalographic axes of polycrystalline skeletal fibers in extant or fossil coralla, suggests that nanograins are monocrystalline and crystallographically ordered (at least after deposition). A distinctly granular versus an unresolvable pattern of nano−organization of CaCO₃ fibers seems to correspond, respectively, to an original versus a diagenetically depleted amount of organic matter bounding a mineral phase; this is consistent with qualitative and quantitative analyses of organic matter content in extant and fossil skeletons.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

50

Numer

4

Opis fizyczny

p.847-865,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
autor

Bibliografia

  • Addadi, L., Raz, S., and Weiner, S. 2003. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Advanced Materials 15: 959–970.
  • Astilleros, J.M., Pina, C.M., Fernández−Díaz, and Putnis, A. 2003. Nanoscale growth of solid crystallising from multicomponent aqueous solutions. Surface Science 545: L767–L773.
  • Barnes, D.J. 1970. Coral skeletons: an explanation of their growth and structure. Science 170: 1305–1308.
  • Becker, A., Bismayer, U., Epple, M., Fabritius, H., Hasse, B., Shi, J., and Ziegler, A. 2003. Structural characterisation of X−ray amorphous calcium carbonate (ACC) in sternal deposits of the crustacea Porcellio scaber. Dalton Transactions 2003: 551–555.
  • Benzerara, K., Menguy, N., Guyot, F., Dominici, C., and Gillet, P. 2003. Nanobacteria−like calcite single crystals at the surface of the Tataouine meteorite. Proceedings of the National Academy of Sciences 100: 7438–7442.
  • Brand, U. 1989. Aragonite−calcite transformation based on Pennsylvanian molluscs. Geological Society of America Bulletin 101: 377–390.
  • Bryan, W. H. and Hill, D. 1942. Spherulitic crystallization as a mechanism of skeletal growth in the Hexacorals. Proceedings of the Royal Society of Queensland 52: 78–91.
  • Cairns, S.D. 1977. A revision of the recent species of Stephanocyathus (Anthozoa: Scleractinia) in the western Atlantic, with descriptions of two new species. Bulletin of Marine Science 27: 729–739.
  • Cairns, S.D. 1991. The marine fauna of New Zealand: Stylasteridae (Cnidaria: Hydroida). New Zealand Oceanographic Institute Memoir 98: 1–180.
  • Cairns, S.D., Hoeksema, B.W., and Van Der Land, J. 1999. Appendix: List of Stony Coral. In: S.D. Cairns, Species Richness of Recent Scleratinia. Atoll Research Bulletin 459: 13–16.
  • Cieśliński, S. and Rzechowski, J. 1993. Mapa geologiczna podłoża czwartorzędu Roztocza między Tomaszowem Lubelskim a Hrebennem. In: M. Harasimiuk, J. Krawczuk, and J. Rzechowski (eds.), Tektonika Roztocza i jej aspekty sedymentologiczne, hydrologiczne i geomorfologiczno−krajobrazowe, 38–46. Towarzystwo Wolnej Wszechnicy Polskiej, Lublin.
  • Clode, P.T. and Marshall, A.T. 2002. Low temperature FESEM of the calcifying interface of a scleractinian coral. Tissue and Cell 34: 187–198.
  • Clode, P.L. and Marshall, A.T. 2003a. Calcium associated with a fibrillar organic matrix in the scleractinian coral Galaxea fascicularis. Protoplasma 220: 153–161.
  • Clode, P.L. and Marshall, A.T. 2003b. Skeletal microstructure of Galaxea fascicularis exsert septa: a high−resolution SEM study. Biological Bulletin 204: 146–154.
  • Cohen, A.L. and McConnaughey, T.A. 2003. Geochemical perspectives on coral mineralization. In: P.M. Dove, J.J. De Yoreo, and S. Weiner (eds.), Biomineralization. Reviews in Mineralogy and Geochemistry 54: 151–185.
  • Constantz, B.R. 1986a. Coral skeleton construction: a physiochemically dominated process. Palaios 1: 152–157.
  • Constantz, B.R. 1986b. The primary surface area of corals and variations in their susceptibility to diagenesis. In: J.H. Schroeder and B.H. Purser (eds.), Reef Diagenesis, 53–76. Springer−Verlag, Berlin.
  • Cuif, J.P. 1975. Caracteres morphologiques, microstructuraux et systematiques des Pachythecalidae, nouvelle famille de Madreporaires triasiques. Geobios 8: 157–180.
  • Cuif, J.−P. and Dauphin, Y. 1998. Microstructural and physico−chemical characterization of “centers of calcification” in septa of some Recent scleractinian corals. Paläontologische Zeitschrift 72: 257–270.
  • Cuif, J.−P. and Dauphin, Y. 2005a. The environment recording unit in coral skeletons—a synthesis of structural and chemical evidences for a biochemically driven, stepping−growth process in fibers.Biogeosciences 2: 61–73.
  • Cuif, J.−P. and Dauphin, Y. 2005b. The two−step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale. Journal of Structural Biology 150: 319–331.
  • Cuif, J.−P. and Sorauf, J.E. 2001. Biomineralization and diagenesis in Scleractinia: part I, biomineralization.Bulletin of the Tohoku University Museum 1: 144–151.
  • Cuif, J.−P., Dauphin, Y., and Gautret, P. 1997. Biomineralization features in scleractinian coral skeletons: source of new taxonomic criteria. Boletín de la Real Sociedad Española de Historia Natural (Sección Geológica) 92: 129–141.
  • Cuif, J.−P., Dauphin, Y., Doucet, J., Salome, M., and Susini, J. 2003. XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochimica et Cosmochimica Acta 67: 75–83.
  • Cuif, J.−P., Dauphin, Y. Berthet, P., and Jegoudez, J. 2004. Associated water and organic compounds in coral skeletons: Quantitative thermogravimetry coupled to infrared absorption spectrometry. Geochemistry, Geophysics, Geosystems 5: Q11011, doi:10.1029/2004GC000783.
  • Cuif, J.−P., Dauphin, Y., Freiwald, A. Gautret, P., and Zibrowius, H. 1999. Biochemical markers of zooxanthellae symbiosis in soluble matrices of skeleton of 24 Scleractinia species. Comparative Biochemistry and Physiology A 123: 269–278.
  • Cuif, J.−P., Fischer, J.−C., and Marcoux, J. 1972. Découverte d’une faune de Chaetetida dans le Trias supérieur de Turquie. Comptes rendus hébdomadaires des séances de l’Académie des Sciences D 275: 185–188.
  • Cuif, J.−P., Lecointre, G., Perrin, C., Tillier, A., and Tillier, S. 2003. Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zoologica Scripta 32: 459–473.
  • Dana, J.D. 1846. Zoophytes. United States exploring expedition during the years 1838–1842, under the command of Charles Wilkes 7: 1–740.
  • Dauphin, Y. 2001. Nanostructures de la nacre des tests de céphalopodes actuels. Paläontologische Zeitschrift 75: 113–122.
  • Dauphin, Y. 2002. Fossil organic matrices of the Callovian aragonitic ammonites from Lukow (Poland): location and composition.International Journal of Earth Sciences (Geologische Rundschau) 91: 1071–1080.
  • Deng, S.G., Cao, J.M., Feng, J. Guo, J. Fang, B.Q., Zheng, M.B., and Tao, J. 2005. A bio−inspired approach to the synthesis of CaCO3 spherical assemblies in a soluble ternary−additive system. Journal of Physical Chemistry B 109: 11473–11477.
  • Domart−Coulon, I.J., Elbert, D.C., Scully, E.P. Calimlim, P.S., and Ostrander, G.K. 2001. Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral. Pocillopora damicornis. Proceedings of the National Academy of Sciences 98: 11885–11890.
  • Felix, J. 1903. Die Anthozoen der Gosauschichten in den Ostalpen. Palaeontographica 49: 163–359.
  • Friedman, G.M. 1959. Identification of carbonate minerals by staining methods. Journal of Sedimentary Petrology 29: 87–97.
  • Gautret, P. and Marin, F. 1993. Evaluation of diagenesis in scleractinan corals and calcified demosponges by substitution index measurement and intraskeletal organic matrix analysis. Courier Forschungsinstitut Senckenberg 164: 317–327.
  • Gautret, P., Cuif, J.−P., and Stolarski, J. 2000. Organic components of the skeleton of scleractinian corals – evidence from in situ acridine orange staining. Acta Palaeontologica Polonica 45: 107–118.
  • Geist, J., Auerswald, K., and Boom, A. 2005. Stable carbon isotopes in freshwater mussel shalls: Environmental record or marker for metabolic activity? Geochimica et Cosmochimica Acta 69: 3545–3554.
  • Goldfuss, A. 1926. Petrefacta Germaniae. 252 pp. Arnz, Düsseldorf.
  • Gower, L.A. and Tirrell, D.A. 1998. Calcium carbonate films and helices grown in solution of poly(aspartate). Journal of Crystal Growth 191: 153–160.
  • Isa, Y. 1986. An electron microscope study on the mineralization of the skeleton of the staghorn coralAcropora hebes. Marine Biology 93: 91–101.
  • Johnston, I.S. 1980. The ultrastructure of skeletogenesis in hermatypic corals. International Review of Cytology 67: 171–214.
  • Kirkland, B.L., Lynch, F.L., Rahnis, M.A., Folk, R.L., Molineux, I.J., and McLean, R.J.C. 1999. Alternative origins for nannobacteria−like objects in calcite. Geology 27: 347–350.
  • Kaźmierczak, J. and Kempe, S. 2003. Modern terrestrial analogues for the carbonate globules in Martian meteorite ALH84001. Naturwissenschaften 90: 167–172.
  • Lamarck, J.B. 1816. Histoire naturelle des animaux sans vertebres. Tome 2. 568 pp. Verdiere, Paris.
  • Linnaeus, C. 1767. Systema naturae, sive Regna tria Naturae systematice proposita per classes, ordines, genera et species 1 (2) 12 edition, 533–1327. Laurentius Salvius, Stockholm.
  • López−Garcia, P., Kaźmierczak, J., Benzerara, K., Kempe, S. Guyot, F., and Moreira, D. 2005. Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles 9: 263–274.
  • Mann, S. 2000. Crystal tectonics: Chemical construction and self−organization beyond the unit cell. Journal of the Royal Chemical Society, Dalton Transactions 2000: 3753–3763.
  • Mann, S. 2001. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. 216 pp. Oxford University Press, Oxford.
  • Marin, F. and Luquet, G. 2004. Molluscan shell proteins. Comptes Rendus Palevol 3: 469–492.
  • Meibom, A., Cuif, J.−P., Hillion, F., Constantz, B. R., Juillet−Leclerc, A., Dauphin, Y., Watanabe, T., and Dunbar, R.B. 2004. Distribution of magnesium in coral skeleton. Geophysical Research Letters 31: doi: 10.1029/2004GL021313.
  • Mitterer, R.M. 1993. The diagenesis of proteins and amino acids in fossil shells. In: M.H. Engel and S.A. Macko (eds.), Organic Geochemistry, 739–753. Plenum Press, New York.
  • Muscatine, L., Goiran, C. Land, L. Jaubert, J. Cuif, J−P, and Allemand, D. 2005. Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton. Proceedings of the National Academy of Sciences 102: 1525–1530.
  • Naka, K. and Chujo, Y. 2001. Control of crystal nucleation and growth of calcium carbonate by synthetic substrates. Chemical Materials 13: 3245–3259.
  • Nyberg, J., Csapo, J., Malmgren, B., and Winter, A. 2001. Changes in the D− and L−content of aspartic acid, glutamic acid, and alanine in a scleractinian coral over the last 300 years. Organic Geochemistry 32: 623–632.
  • Perrin, C. 2004. Early diagenesis of carbonate biocrystals : isomineralogical changes in aragonite coral skeletons. Bulletin de la Société Géologique de France 175: 95–106.
  • Philippi, R.A. 1842. Zoologische Beobachtungen. 6. Verzeichniss der im Mittelmeer von mir beobachteten ArtenCyathina Ehrenberg. Archiv für Naturgeschichte 8: 40–44.
  • Politi, Y. Arad, T., Klein, E., Weiner, S., and Addadi, L. 2004. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306: 1161–1164.
  • Raz, S., Testeniere, O. Hecker, A. Weiner, S., and Luquet, G. 2002. Stable amorphous calcium carbonate is the main component of the calcium storage structures of the crustacean Orchestia cavimana. Biological Bulletin 203: 269–274.
  • Reitner, J. 1992. “Coralline Spongien” – Der Versuch einer phylogenetischtaxonomischen Analyse. Berliner Geowissenschaftliche Abhandlungen E 1: 1–352.
  • Reitner, J., Wörheide, G., Lange, R., and Thiel, V. 1997. Biomineralization of calcified skeletons in three Pacific coralline demosponges—an approach to the evolution of basal skeletons. Courier Forschungs−Institut Senckenberg 201: 371–383.
  • Reuss, A.E. 1871. Die fossilen Korallen des österreichisch−ungarischen Miozäns. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch−naturwissenschaftliche Classe 31: 197–270.
  • Rousseau, M., Lopez, E., Stempflé, P., Brendlé, M., Franke, L., Guette, A., Naslain, R., and Bourrat, X. 2005. Multiscale structure of sheet nacre. Biomaterials 26: 6254–6262.
  • Roniewicz, E. 1982. Pennular and non−pennular Jurassic scleractinians—some examples. Acta Palaeontologica Polonica 24: 157–193.
  • Roniewicz, E. 1984. Aragonitic Jurassic corals from erratic boulders on the South Baltic coasts.Annales Societatis Geologorum Poloniae 54: 65–77.
  • Sayan, P. 2005. Effect of sodium oleate on the agglomeration of calcium carbonate. Crystal Research and Technology 40: 226–232.
  • Sinclair, D.J. 2005. Correlated trace element “vital effects” in tropical corals: A new geochemical tool for probing biomineralization. Geochimica et Cosmochimica Acta 69: 3265–3284.
  • Scherer, M. 1977. Preservation, alternation and multiple cementation of aragonitic skeletons from the Cassian Beds (U. Triassic, Southern Alps): petrographic and geochemical evidence. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 154: 213–262.
  • Sorauf, J.E. 1999. Skeletal microstructure, geochemistry and organic remnants in Cretaceous scleractinian corals: Santonian Gosau Beds of Gosau, Austria. Journal of Paleontology 73: 1029–1041.
  • Sorauf, J.E. and Cuif, J.−P. 2001. Biomineralization and diagenesis in Scleractinia: part II, diagenesis. Bulletin of the Tohoku University Museum 1: 152–163.
  • Stolarski, J. 1991. Miocene Scleractinia from Holy Cross Mountains , Poland; Part 1. Caryophylliidae, Flabellidae, Dendrophylliidae and Micrabaciidae. Acta Geologica Polonica 41: 37–67.
  • Stolarski, J. 2003. Three−dimensional micro− and nanostructural characteristics of the scleractinian coral skeleton: A biocalcification proxy. Acta Palaeontologica Polonica 48: 497–530.
  • Takahashi, K. Kobayashi, A. Doi, M. Adachi, S., Taguchi, T., Okamura, T. Yamamoto, H., and Ueyama, N. 2005. Restriction of CaCO3 polymorh by NH···O hydrogen−bonded poly(methacryloylaminocarboxylate) ligands: induced polymorh change by strength and/or formation manner of hydrogen bond. Journal of Materials Chemistry 15: 2178–2187.
  • Thurmann, J. and Étallon, A. 1864. Lethea Bruntrutana, ou études paléontologiques et stratigraphiques sur le Jura Bernois et en particulier les environs de Porrentruy. Neue Denkschriften der allgemeinen Schweizerischen Gesellschaft für die gesammten Naturwissenschaften 20: 357–412.
  • Towe, K.M. 1972. Invertebrate shell structure and the organic matrix concept. Biomineralization 4: 1–14.
  • Wainwright, S.A. 1964. Studies of the mineral phase of coral skeleton. Experimental Cell Research 34: 213–230.
  • Watanabe, T., Fukuda, I., China, K., and Isa, Y. 2003. Molecular analyses of protein components of the organic matrix in the exoskeleton of two scleractinian coral species. Comparative Biochemistry and Physiology B 136: 767–774.
  • Weiner, S., Levi−Kalisman, Y, Raz, S., and Addadi, L. 2003. Biologically formed amorphous calcium carbonate. Connective Tissue Research 44: 214–218.
  • Weiss, I.M., Tuross, N., Addadi, L., and Weiner, S. 2002. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. Journal of Experimental Zoology 293: 478–491.
  • Wells, J.W. 1933. Corals of the Cretaceous of the Atlantic and Gulf Costal Plains and W−Interior of the United States. Bulletins of American Paleontology 18: 83–292.
  • White, C.A. 1879. Contribution to paleontology No. 1: Cretaceous fossils of the western states and territories. Annual Report of the United States geological and geographical Survey of the Territories 11 (for 1877): 273–319.
  • Wörheide, G. 1998. The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo−Pacific. Facies 38: 1–88.
  • Vacelet, J. and Lévi, C. 1958. Un cas de survivance en Méditerranée, du grupe d’éponges fossiles des Pharétronides.Comptes rendus hebdomadaires des séances de l’Académie des sciences 246: 318–320.
  • Volz, W. 1896. Die Korallenfauna der Trias. II. Die Korallen der Schichten von St. Cassian in Süd Tirol. Palaeontographica 43: 1–124.
  • Xu, X., Han, J.T, and Cho, K. 2005. Deposition of amorphous calcium carbonate hemispheres on substrates. Langmuir 21: 4801–4804.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2788af5b-e50d-4f19-870d-9c7996a898b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.