PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 44 | 3 |

Tytuł artykułu

Helix-coil transition theories. Are they correct?

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Principles of contemporary theoretical description of a-helix formation by polypeptide chains in water solution are shortly presented and critically dis­cussed. The theory treats the unfolded state of a peptide as "random coil" — an ideal conformation quite distant from reality. We suggest that for this reason the helix propagation parameters of amino-acid residues, determined using series of model peptides with different sequential patterns, are not the same. Interpretation of the so called "nucleation parameter" is erroneous. In fact, it is not determined by the helix nucleation process but rather by a specific situation of residues at the helix N- and C-termini, and it strongly depends on solvation of their NH and CO groups, respectively. Consequently, helical seg­ments with terminal sequences dominated by residues with strongly hydropho­bic, bulky side chains can be very unstable. We postulate that an unexpectedly high stability of very short, pre-nucleated helices studied by us arises from a "helix end separation effect": separated helix termini are better solvated than when they overlap each other. Because of this effect, helix initiation may be much more difficult than predicted by the theoretical "helix nucleation parameters".

Wydawca

-

Rocznik

Tom

44

Numer

3

Opis fizyczny

p.423-432,fig.

Twórcy

  • Polish Academy of Sciences, A.Pawinskiego 5a, 02-106 Warsaw, Poland
autor

Bibliografia

  • 1. Ziram, B.H. & Bragg. J.K. (1959) Theory of the phase transition between helix and ran­dom coil in polypeptide chains. J. Chem. Phys. 31,526-535.
  • 2. Lifson, S. & Roig, A. (1961) On the theory of helix-coil transition in polypeptides. J. Chem. Phys. 34, 1963-1974.
  • 3. Pauling, L., Corey, R.B. & Branson, H.R. (1951) The structure of proteins: Two hydro­gen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U.S.A. 37, 205-211.
  • 4. Aqvist, J., Luecke, H., Quiocho, F.A. & War- shel, A. (1991) Dipoles localized at helix ter­mini of proteins stabilize charges. Proc. Natl. Acad. Sci. U.S.A. 88. 2026-2030.
  • 5. Qian, H. & Schellman, J.A. (1992) Helix-coil theories: A comparative study for finite length polypeptides. J. Phys. Chem. 96, 3987-3994.
  • 6. Bierzyriski, A. (1987) The a-helical conforma­tion of short natural polypeptide chains in water solutions. Comments Mol. Cell. Bio- phys. 4, 189-214.
  • 7. Chakrabartty, A. & Baldwin, R.L. (1995) Sta­bility of a-helices. Adv. Protein Chem. 46, 141-176.
  • 8. Baldwin, R.L. (1995) a-Helix formation by peptides of defined sequence. Biophys. Chem. 55, 127-135.
  • 9. Zhou, H.X., Lyu, P.. Wemmer, D.E. & Kallen- bach, N.R. (1994) Alpha helix capping in syn­thetic model peptides by reciprocal side chain- main chain interactions: Evidence for an N terminal "capping box". Proteins 18, 1-7.
  • 10. Seale, J.W., Srinivasan, R. & Rose, G.D. ( 1994) Sequence determinants of the capping box, a stabilizing motif at the N-termini of a-helices. Protein Sci. 3, 1741-1745.
  • 11. Milner-White. E.J. (1988) Recurring loop mo­tif in proteins that occurs in right-handed and left-handed forms. J. Mol. Biol. 199,503-511.
  • 12. Presta, L.G. & Rose, G.D. (1988) Helix signals in proteins. Science 240. 1632-1641.
  • 13. Creamer, T.P. & Rose, G.D. (1995) Interac­tions between hydrophobic side chains within a-helices. Protein Sci. 4, 1305-1314.
  • 14. Munoz, V. & Serrano, L. (1995) Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides. J. Mol. Biol. 245, 275-296.
  • 15. Stapley, B.J., Rohl, C.A. & Doig, A.J. (1995) Addition of side chain interactions to modified Lifson-Roig helix-coli theory: Application to energetics of phenylalanine-methionine in­teractions. Protein Sci. 4, 2383-2391.
  • 16. Munoz, V. & Serrano, L. (1995) Elucidating the folding problem of helical peptides using empirical parameters. III. Temperature and pH dependence. J. Mol. Biol. 245, 297-308.
  • 17. Brant, D.A. & Flory, P.J. (1965) The configu­ration of random polypeptide chains. II. The­ory. J. Am. Chem. Soc. 87, 2791-2800.
  • 18. Nemethy, G. & Scheraga, H.A. (1977) Protein folding. Quat. Rev. Biophys. 10, 239-352.
  • 19. Dyson, H.J. & Wright, P.E. (1993) Peptide conformation and protein folding. Curr. Opin. Struct. Biol. 3, 60-65.
  • 20. Brooks III, C.L. (1993) Molecular simulations of peptide and protein unfolding: In quest of molten globule. Curr. Opin. Struct. Biol. 3, 92-98.
  • 21. Amir, D. & Haas, E. Q988) Reduced bovine pancreatic inhibitor has a compact structure. Biochemistry 27, 8889-8893.
  • 22. Gussakovsky, E.E. & Haas, E. (1992) The compact state of reduced bovine pancreatic trypsin inhibitor is not the compact molten globule. FEBS Lett. 308. 146-148.
  • 23. Fukugita, M., Lancaster, D. & Mitchard, M.G. (1993) Kinematics and thermodynamics of a folding heteropolymer. Proc. Natl. Acad. Sci. U.S.A. 90, 6365-6368.
  • 24. Chakrabartty. A., Kortemme, T. & Baldwin, R.L. (1994) Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interac­tions. Protein Sci. 3, 843-852.
  • 25. Gans, P.J., Lyu, P.C., Manning, M.C., Woody, R.W. & Kallenbach, N.R. (1991) The helix-coil transition in heterogeneous peptides with specific side-chain interactions: Theory and comparison with CD spectral data. Biopolym- ers 31, 1605-1614.
  • 26. Doig, A.J. & Baldwin, R.L. (1995) N- and C-capping preferences for all 20 amino acids in alpha-helical peptides. Protein Sci. 4, 1325-1336.
  • 27. Park, S.-H., Shalongo, W. & Stcllwagen, E. (1993) Residue helix parameters obtained from dichroic analysis of peptides of defined sequence. Biochemistry 32. 7048-7053.
  • 28. Rose, G.D. & Wolfenden, R. (1993) Hydrogen bonding, hydrophobicity, packing, and pro­tein folding. Annu. Rev. Biophys. Biomol. Struct. 22, 381-415.
  • 29. Dadlez, M., Góral, J. & Bierzyński, A. (1991) Luminescence of peptide-bound terbium ions. Determination of binding constants. FEBS Lett. 282, 143-146.
  • 30. Wójcik, J., Góral, J., Pawłowski, K. & Bier­zyński, A. (1997) Isolated calcium-binding loops of EF-hand proteins can dimerize to form a native-like structure. Biochemistry 36. 680-687.
  • 31. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S.J. & Weiner, P. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765-784.
  • 32. Harpaz, Y., Elmasry, N., Fersht, A.R. & Hen- rick, K. (1994) Direct observation of better hydration at the N-terminus of an a-helix with glycine rather than alanine as the N-cap residue. Proc. Natl. Acad. Sci. U.S.A. 91, 311-315.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-24cf9042-89c1-4b3f-997d-a89da72f664c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.