PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 53 | Suppl. |

Tytuł artykułu

Analysis of the peptidoglycan hydrolases of Listeria monocytogenes: multiple enzymes with multiple functions

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Listeria monocytogenes is a ubiquitous gram-positive, rod-shaped, widespread in nature, facultative intracellular human and animal pathogen that causes infections collectively termed listeriosis. L. monocytogenes EGD encodes a total of 133 surface proteins, the abundance of which, as well as the variety of anchoring systems, probably reflects the ability of this bacterium to survive in diverse environments and to interact with many kinds of eukaryotic cells. The group of surface proteins also includes proteins with murein hydrolase activity-autolysins. To date, five L. monocytogenes autolysins have been identified: p60, P45, Ami, MurA and Auto. These enzymes are involved in numerous cellular processes including cell growth, cell wall turnover, peptidoglycan maturation, cell division and separation, formation of flagella, sporulation, chemotaxis and biofilm formation, genetic competence, protein secretion, the lytic action of some antibiotics and pathogenicity. We have recently identified a putative sixth listerial peptidoglycan-degrading enzyme, which has surprisingly been identified as FlaA, a flagellar protein of L. monocytogenes.

Wydawca

-

Rocznik

Tom

53

Numer

Opis fizyczny

p.29-34,fig.,ref.

Twórcy

autor
  • Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland

Bibliografia

  • Braun L. and P. Cossart. 2000.Interactions between Listeria monocytogenes and host mammalian cells. Micro. Infect. 2: 803-811.
  • Bubert A, M. Kuhn, W. Goebel and S. Kohler. 1992. Structural and functional properties of the p60 proteins from different Listeria species. J. Bacteriol. 174: 8166-71.
  • Cabanes D., P. Dehoux, O. Dussurget, L. Frangeul and P. Cossart. 2002. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends in Microbiol. 5: 238-245.
  • Cabanes D., P. Dehoux, O. Dussurget, L. Frangeul and P. Cossart. 2004. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol. Microbiol. 51: 1601-14.
  • Carroll S.A, T. Hain, U. Technow, A. Darji, P. Pashalidis, S.W. Joseph and T. Chakraborty. 2003. Identification and characterization of a peptidoglycan hydrolase, MurA, of Listeria monocytogenes, a muramidase needed for cell separation. J. Bacteriol. 185: 6801-8.
  • Chakraborty T., T. Hain and E. Domann. 2000. Genome organization and the evolution of the virulence gene locus in Listeria species. Int. J. Med. Microbiol. 290: 167-174.
  • Chamaillard M., M. Hashimoto, Y. Horie, J. Masumoto, S. Qiu, L. Saab, Y. Ogura, A. Kawasaki, K. Fukase, S. Kusumo to, M.A. Valvano, S.J. Foster, T.W. Mak, G. Nunez and N. Inohara. 2003. An essential role for NODI in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4: 702-7.
  • Cheung A.L. and G. Zhang. 2002. Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front. Biosci. 7: 1825-42.
  • Dons L., O.F. Rasmussen and J.E. Olsen. 1992. Cloning and characterization of a gene encoding flagellin of Listeria monocytogenes. Mol. Microbiol. 6: 2919-2929.
  • Farber J.M. 1991. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55: 476-511.
  • Foster S.J. 1995. Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J. Bacteriol. 177: 5723-5.
  • Fournier B., A. Klier and G. Rapoport. 2001. The two-component system ArlS-ArlR is a regulator of virulence gene expression in Staphylococcus aureus. Mol. Microbiol. 41: 247-261.
  • Girardin S.E., 1.0. Boneca, L.A. Carneiro, A. Antignac, M. Jehanno, J. Viala, K. Tedin, M.K. Taha, Labigne, U. Zahringer, A.J. Coyle, RS. DiStefano, J. Bert in, RJ. Sansonetti and D.J. Philpott. 2003. Nodi detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 6: 1584-7.
  • Gugnani H.C. 1999. Some emerging food and water borne pathogens. J. Commun. Dis. 31: 65-72.
  • Hof H., T. Nichterlein and M. Kretschmar. 1997. Management of listeriosis. Clin. Microbiol. Rev. 10: 345-357.
  • Hölje J.V. 1995. From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol. 164: 243-54.
  • Ingavale S.S., W. Van Wamel and A.L. Cheung. 2003. Characterization of RAT, an autolysis regulator in Staphylococcus aureus. Mol. Microbiol. 48: 1451-1466.
  • Inohara N., Y. Ogura, A. Fontalba, O. Gutierrez, F. Pons, J. Crespo, K. Fukase, S. Inamura, S. Kusumoto, M. Hashimoto, S.J. Foster, A.P. Moran, J.L. Fernandez-Luna and G. Nunez. 2003. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 21: 5509-12.
  • Kamisango K., I. Saiki, Y. Tanio, H. Okumura, Y. Araki, I. Sekikawa, I. Azuma and Y. Yamamura. 1982. Structures and biological activities of peptidoglycans of Listeria monocytogenes and Propionibacterium acnes. J. Biochem. 92: 23-33.
  • Kohler S., A. Bubert, M. Vogel and W. Goebel. 1991. Expression of the iap gene coding for protein p60 of Listeria monocytogenes is controlled on the posttranscriptional level. J. Bacteriol. 173: 4668-74.
  • Kuhn M. and W. Goebel. 1989. Identification of an extracellular protein of Listeria monocytogenes posibly involved in intracellular uptake by mammalian cells. Infect. Immun. 57: 55-61.
  • Lecuit M., S. Vandormael-Pournin, J. Lefort, M. Huerre, P. Gounon, C. Dupuy, C. Babinet and P. Cossart. 2001. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292: 1722-1725.
  • Lenz L.L., S. Mohammadi, A. Geissler and D.A. Portnoy. 2003. SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc. Natl. Acad. Sci. USA 14: 12432-7.
  • McLaughlan A.M. and S.J. Foster. 1998. Molecular characterization of an autolytic amidase of Listeria monocytogenes EGD. Microbiol. 144: 1359-1367.
  • McLaughlan A.M. and S.J. Foster. 1997. Characterisation of the peptidoglycan hydrolases of Listeria monocytogenes EGD. FEMS Microbiol. Lett. 1: 149-54.
  • Milohanic E., B. Pron, P. Berche and J.L. Gaillard. 2000. Identification of new loci involved in adhesion of Listeria monocytogenes to eukaryotic cells. European Listeria Genome Consortium. Microbiol. 146: 731-9.
  • Milohanic E., R. Jonquieres, P. Coossart, P. Berche, J.L. Gaillard. 2001. The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol. Microbiol. 39: 1212-1224.
  • Navarre W.W. and O. Schneewind. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63: 174-229.
  • Park J.H., Y.S. Lee, Y.K. Lim, S.H. Kwon, C.U. Lee and B.S. Yoon. 2000. Specific binding of recombinant Listeria monocytogenes p60 protein to Caco-2 cells. FEMS Microbiol. Lett. 186: 35-40.
  • Pilgrim V., A. Kolb-Maurer, L. Gentschev, W. Goebel and M. Kuhn. 2003. Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and los of actin-based motility. Infect. Immun. 71: 3473-3484.
  • Ponting C.R, L. Aravind, J. Schultz, P. Bork and EV. Koonin. 1999. Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol. Biol. 18: 729-45.
  • Popowska M. and Z. Markiewicz. 2004a. Classes and functions of Listeria monocytogenes surface proteins. Pol. J. Microbiol. 53: 75-88.
  • Popowska M. and Z. Markiewicz. 2004b. Murein-hydrolyzing activity of flagellin FlaA of Listeria monocytogenes. Pol. J. Microbiol. 53:
  • Portnoy D.A., T. Chakraborty, W. Goebel and P. Cossart. 1992. Molecular determinants of Listeria monocytogenes pathogenesis. Infect. Immun. 60: 1263-1267.
  • Schaffter N. and A. Parriaux. 2002. Pathogenic-bacterial water contamination in mountainous catchments. Water Res. 36: 131-139.
  • Schlech W.F. 2000. Foodborne listeriosis. Clin. Infect. Dis. 31: 770-5.
  • Schubert K., A.M. Bichlmaier, E. Mager, K. Wolff, G. Ruhland and F. Fiedler. 2000. P45, an extracellular 45 kDa protein of Listeria monocytogenes with similarity to protein p60 and exhibiting peptidoglycan lytic activity. Arch. Microbiol. 173: 21-28.
  • Shockman G.D. and J.V. Hölje. 1994. Microbial peptidoglycan (murein) hydrolases. Ghuysen J.M., Hakenbeck R. Bacterial Cell Wall 131.
  • Tuomanen E., U. Schwarzand S. Sande. 1990. The vir locus affects the response of Bordetella pertussis to antibiotics: phenotypic tolerance and control of autolysis. J. Inf. Dis. 162, 560.
  • Vazquez-Boland J.A., M. Kuhn, P. Berche, T. Chakraborty, G. Dominguez-Bernal, W. Goebel, Gonzales-Zorn, J. Wehland and J. Kreft. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14: 584-640.
  • Wiśniewski J.M. and J.E. Bielecki. 1999. Intracellular growth of Listeria monocytogenes insertional mutant deprived of protein p60. Acta Microbiol. Pol. 48: 317-329.
  • Wuenscher M.D., S. Kohler, A. Bubert, U. Gerike and W. Goebel. 1993. The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J. Bacteriol. 175: 3491-501.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-234452e9-bef8-411b-92ca-c965fc55debd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.