PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 49 | 2 |

Tytuł artykułu

Metabolic activation of adriamycin by NADPH-cytochrome P450 reductase; overview of its biological and biochemical effects

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
NADPH-cytochrome P450 reductase (P450 reductase) is one of the enzymes impli­cated in the metabolism of adriamycin, a very important clinically used antitumour drug. However, apart from the enzyme involvement, so far little was known about the chemical route and biochemical effects of this process. We demonstrated that the ap­plication of P450 reductase simultaneously with adriamycin to tumour cells in culture significantly increased cytotoxicity of the drug. Under tissue culture conditions, we noticed also that, in the presence of P450 reductase, adriamycin metabolite(s), dis­playing an altered spectrum within the visible light range were formed. This observa­tion was taken adavantage of to study the metabolism of adriamycin in cell-free sys­tems, using initially the enzyme isolated from rat liver and the recently obtained re­combinant human P450 reductase. The reductive conversion of the drug turned out to be a multi-stage process, which occurred only under aerobic conditions and was ac­companied by excessive NADPH consumption. Further research carried out with the aid of radical scavengers and radiolabelled adriamycin revealed that the enhance­ment of biological activity of adriamycin by P450 reductase stemmed from the forma­tion of alkylating metabolite(s) rather than from the promotion of redox cycling known to be induced in the presence of anthracyclines.

Wydawca

-

Rocznik

Tom

49

Numer

2

Opis fizyczny

p.323-331,fig.

Twórcy

autor
  • Gdansk University of Technology, G.Narutowicza 11-12, 80-952 Gdansk, Poland

Bibliografia

  • Alegria AA, Samuni A, Mitchell JB, Riesz P, Russo A. (1989) Free radicals induced by adriamycin-sensitive and adriamycin-resistant cells: a spin-trapping study. Biochemistry.; 28: 8653-8.
  • Bachur NS, Gordon SL, Gee MV, Kon H. (1979) NADPH cytochrome P450 reductase activation of anticancer agents to free radicals. Proc Natl Acad Sci US A.; 76: 954-7.
  • Bartoszek A, Wolf CR. (1992) Enhancement of doxorubicin toxicity following activation by NADPH cytochrome P450 reductase. Biochem Pharmacol.; 43: 1449-57.
  • Bligh HFJ, Bartoszek A, Robson CN, Hickson ID, Kasper CB, Beggs JD, Wolf CR. (1990) Activation of mitomycin C by NADPH: cytochrome P450 reductase. Cancer Res.; 50: 7789-92.
  • Cummings J, Allan L, Willmott N, Riley R, Workman P, Smyth JF. (1994) The enzymology of doxorubicin quinone reduction in tumour tissue. Biochem Pharmacol.; 44: 2175-83.
  • Cummings J, Bartoszek A, Smyth JF. (1991) Determination of covalent binding to intact DNA, RNA, and oligonucleotides by intercalating anticancer drugs using high-performance liquid chromatography. Studies with doxorubicin and cytochrome P450 reductase. Anal Biochem.; 194: 146-55.
  • Doroshow JH. (1986) Prevention of doxorubicin-induced killing of MCF-7 human breast cells by oxygen radical scavengers and iron chelating agents. Biochem Biophys Res Commun.; 135: 330-5.
  • Gaudiano G, Koch TH, Lo Bello M, Nuccetelli M, Ravagnan G, Serafino A, Sinibaldi-Vallebona P. (2000) Lack of glutathione conjugation to adriamycin in human breast cancer MCF-7/DOX cells. Biochem Pharmacol.; 60: 1915-23.
  • Gerwitz DA. (1999) A critical evaluation of the mechanism of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunomycin. Biochem Pharmacol.; 57: 724-41.
  • Konopa J. (1990) Interstrand DNA crosslinking by 1-nitroacridines, anthracyclines and aminoanthraquinones. Pharmacol Ther.; 7(suppl.): 83-94.
  • Paur E, Youngman RJ, Lengfelder E, Elstner EF. (1984) Mechanism of adriamycin-dependent oxygen activation catalyzed by NADPH-cytochrome c-(ferrodoxin)-oxidoreductase. ZNaturforsch.; 39c: 261-7.
  • Podell ER, Harrington DJ, Taatjes DJ, Koch TH. (1999) Crystal structure of epidoxorubicin-formaldehyde virtual crosslink of DNA and evidence for its formation in human breast-cancer cells. Acta Cryst.; D55: 1516-23.
  • Sharples RA, Cullinane C, Phillips DR. (2000) Adriamycin-induced inhibition of mitochondrial-encoded polypeptides as a model system for the identification of hotspots for DNA-damaging agents. Anti-Cancer Drug Design.; 15: 183-90.
  • Sinha BK. (1989) Free radicals in anticancer drug pharmacology Chem-Biol Interact.; 69: 293-317.
  • Skladanowski A, Konopa J. (1994) Relevance of interstrand DNA crosslinking induced by anthracyclines for their biological activity. Biochem Pharmacol.; 47: 2279-87.
  • Taatjes DJ, Fenick DJ, Gaudiano G, Koch TH. (1998) A redox pathway leading to the alkylation of nucleic acids by doxorubicin and related anthracyclines: application to the design of antitumor drugs for resistant cancer. Curr Pharm Des.; 4: 203-18.
  • Taatjes DJ, Koch TH. (2001) Nuclear targeting and retention of anthracycline antitumor drugs in sensitive and resistant tumor cells. Curr Med Chem.; 8: 15-29.
  • Tempczyk A, Tarasiuk J, Ossowski T, Borowski E. (1988) An alternative concept for the molecular nature of the peroxidating ability of anthracycline antitumor antibiotics and anthracenediones. Anti-Cancer Drug Design.; 2: 371-85.
  • Tolba KA, Deliargyris EN. (1999) Cardiotoxicity of cancer therapy. Cancer Invest.; 17: 408-22.
  • Wallace KB, Johnson AJ. (1987) Oxygen-dependent effect of microsomes on the binding of doxorubicin to rat hepatic nuclear DNA. Mol Pharmacol.; 31: 307-11.
  • Zeman SM, Phillips DR, Crothers DM. (1998) Characterization of covalent adriamycin-DNA adducts. Proc Natl Acad Sci US A.; 95: 11561-5.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2185df7e-bd5a-418f-b34d-00ff32b073a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.