PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 11 | 3 |

Tytuł artykułu

The heterogeneity of ion channels in chromaffin granule membranes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Chromaffin granules are involved in catecholamine synthesis and traffic in the adrenal glands. The transporting membrane proteins of chromaffin granules play an important role in the ion homeostasis of these organelles. In this study, we characterized components of the electrogenic 86Rb+ flux observed in isolated chromaffin granules. In order to study single channel activity, chromaffin granules from the bovine adrenal medulla were incorporated into planar lipid bilayers. Four types of cationic channel were found, each with a different conductance. The unitary conductances of the potassium channels are 360 ± 10 pS, 220 ± 8 pS, 152 ± 8 pS and 13 ± 3 pS in a gradient of 450/150 mM KCl, pH 7.0. A multiconductance potassium channel with a conductivity of 110 ± 8 pS and 31 ± 4 pS was also found. With the exception of the 13 pS conductance channel, all are activated by depolarizing voltages. One type of chloride channel was also found. It has a unitary conductance of about 250 pS in a gradient of 500/150 mM KCl, pH 7.0.

Wydawca

-

Rocznik

Tom

11

Numer

3

Opis fizyczny

p.312-325,fig.,ref.

Twórcy

autor
  • Warsaw Agricultural University, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
autor

Bibliografia

  • 1. Szewczyk, A. The intracellular potassium and chloride channels: properties, pharmacology and function. Mol. Membr. Biol. 15 (1998) 49-58.
  • 2. Kicinska, A., Debska, G., Kunz, W. and Szewczyk, A. Mitochondrial potassium and chloride channels. Acta Biochim. Pol. 47 (2000) 541-551.
  • 3. Szewczyk, A. and Marban, E. Mitochondria: a new target for potassium channel openers? Trends Pharm. Sci. 20 (1999) 157-161.
  • 4. Szewczyk, A. and Wojtczak, L. Mitochondria as a pharmacological target. Pharm. Rev. 54 (2002) 101-127.
  • 5. O’Rourke, B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circulation Res. 94 (2004) 420-432.
  • 6. Facundo, H.T., Fornazari, M. and Kowaltowski, A.J. Tissue protection mediated by mitochondrial K+ channels. Biochim. Biophys. Acta 1762 (2006) 202-212.
  • 7. Rahamimoff, R., DeRiemer, S.A., Sakmann, B., Stadler, H. and Yakir, N. Ion channels in synaptic vesicles from Torpedo electric organ. Proc. Nat. Acad. Sci. USA 85 (1988) 5310-5314.
  • 8. Thévenod, F. Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am. J. Physiol. 283 (2002) C651-C672.
  • 9. Garlid, K.D. and Paucek, P. Mitochondrial potassium transport: the K+ cycle. Biochim. Biophys. Acta 1606 (2003) 23-41.
  • 10. Estevez, R. and Jentsch, T.J. CLC chloride channels: correlating structure with function. Curr. Op. Struct. Biol. 12 (2002) 531-539.
  • 11. Parsons, S.M. Transport mechanisms in acetylcholine and monoamine storage. FASEB J. 14 (2000) 2423-2434.
  • 12. Arispe, N., Pollard, H.B. and Rojas, E. Calcium-independent K+ -selective channel from chromaffin granule membranes. J. Membr. Biol. 130 (1992) 191-202.
  • 13. Ashley, R.H., Brown, D.M., Apps, D.K. and Phillips, J.H. Evidence for a K+ channel in bovine chromaffine granule membranes: single-channel properties and possible bioenergetic significance. Eur. Biophys. J. 23 (1994) 263-275.
  • 14. Arispe, N., De Mazancourt, P. and Rojas, E. Direct control of a large conductance K+ -selective channel by G-proteins in adrenal chromaffin granule membranes. J. Membr. Biol. 147 (1995) 109-119.
  • 15. Pazoles, C.J. and Pollard, H.B. Evidence for stimulation of anion transport in ATP-evoked transmitter release from isolated secretory vesicles. J. Biol. Chem. 253 (1978) 3962-3969.
  • 16. Pazoles, C.J., Creutz, C.E., Ramu, A. and Pollard, H.B. Permeant anion activation of MgATPase activity in chromaffin granules. Evidence for direct coupling of proton and anion transport. J. Biol. Chem. 255 (1980) 7863- 7869.
  • 17. Gualix, J., Alvarez, A.M., Pintor, J. and Miras-Portugal, M.T. Studies of chromaffin granule functioning by flow cytometry: transport of fluorescent epsilon-ATP and granular size increase induced by ATP. Receptors Channels 6 (1999) 449-461.
  • 18. Szewczyk, A., Lobanov, N.A., Kicińska, A., Wójcik, G. and Nałęcz, M.J. ATP-sensitive K+ transport in adrenal chromaffin granules. Acta Neurobiol. Exp. 61 (2001) 1-12.
  • 19. Lobanov, N.A., Szewczyk, A., Wójcik, G., Nowotny, M. and Nałęcz, M.J. Effects of K+ channel inhibitors on potassium transport in bovine adrenal chromaffin granules. Biochem. Mol. Biol. Int. 41 (1997) 679-686.
  • 20. Szewczyk, A., Lobanov, N.A., Nowotny, M. and Nałęcz, M.J. Interaction of sulfhydryl reagents with K+ transport in adrenal chromaffin granules. Acta Neurobiol. Exp. 57 (1997) 329-332.
  • 21. Hordejuk, R., Lobanov, N.A., Kicińska, A., Szewczyk, A. and Dołowy, K. pH modulation of large conductance potassium channel from adrenal chromaffin granules. Mol. Membr. Biol. 21 (2004) 1-7.
  • 22. Brocklehurst, K.W. and Pollard, H.B. Cell biology of secretion. in: Peptide Hormone Secretion. A Practical Approach, (Hutton J.C., and Siddle, K. Eds.), IRL, Oxford, New York, Tokyo, 1990, 233-255.
  • 23. Garty, H., Rudy, B. and Karlish, S.J.D. A simple and sensitive procedure for measuring isotope fluxes through ionspecific channels in heterogenous populations of membrane vesicles. J. Biol. Chem. 258 (1983) 13094-13099.
  • 24. Garty, H. and Karlish, S.J.D. Ion channel-mediated fluxes in membrane vesicles: selective amplification of isotope uptake by electrical diffusion potential. Meth. Enzymol. 172 (1989) 155-164.
  • 25. Szabo, I., Bock, J., Jekle, A., Soddemann M., Adams, C., Lang, F., Zoratti, M. and Gulbins, E. A novel potassium channel in lymphocyte mitochondria. J. Biol. Chem. 280 (2005) 12790-12798.
  • 26. Inoue, I., Nagase, H., Kishi, K. and Higuti, T. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352 (1991) 244-247.
  • 27. Siemen, D., Loupatatzis, C., Borecky, J., Gulbins, E. and Lang, F. Ca2+- activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem. Biophys. Res. Commun. 257 (1999) 549-554.
  • 28. Fernandez-Salas, E., Suh, K.S., Speransky, V.V., Bowers, W.L., Levy, J.M., Adams, T., Pathak, K.R., Edwards, L.E., Hayes, D.D., Cheng, C., Steven, A.C., Weinberg, W.C. and Yusupa, S.H. mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol. Cell Biol. 22 (2002) 3610-3620.
  • 29. Loewen, M.E. and Forsyth, G.W. Structure and function of CLCA proteins. Physiol. Rev. 85 (2005) 1061-1092.
  • 30. El-Maghraby, M. and Lever, J.D. Typification and differentiation of medullary cells in the developing rat adrenal. A histochemical and electron microscopic study. J. Anat. 131 (1980) 103-120.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1f55ae0f-339f-4a09-907b-131bd1f649ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.