PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2001 | 43 | 3 |

Tytuł artykułu

Measurement of phytoplankton photosynthesis rate using a pump-and-probe fluorometer

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this work we have studied the possibility of determining the rate of phytoplankton photosynthesis in situ using a submersible pump-and-probe fluorometer in water areas differing in their trophic level, as well as in climatic and hydrophysical characteristics. A biophysical model was used to describe the relationship between photosynthesis, underwater irradiance, and the intensity of phytoplankton fluorescence excited by an artificial light source. Fluorescence intensity was used as a measure of light absorption by phytoplankton and for assessing the efficiency of photochemical energy conversion at photosynthetic reaction centers. Parameters of the model that could not be measured experimentally were determined by calibrating fluorescence and irradiance data against the primary production measured in the Baltic Sea with the radioactive carbon method. It was shown that the standard deviation of these parameters in situ did not exceed 20%, and the use of their mean values to estimate the phytoplankton photosynthetic rate showed a good correlation between the calculated and measured data on primary production in the Baltic (r = 0.89), Norwegian (r = 0.77) and South China (r = 0.76) Seas.

Wydawca

-

Czasopismo

Rocznik

Tom

43

Numer

3

Opis fizyczny

p.291-313,fig.,ref.

Twórcy

autor
  • Moscow State University, Moscow, 119899 Russia
autor
autor
autor
autor

Bibliografia

  • Antal T.K., Venediktov P. S., Konev Y. N., Matorin D. N., Hapter R., Rubin A.B., 1999, Assessment of vertical profiles of phytoplankton photosynthetic activity by the fluorescence method, Engl. Okeanologiya, 39 (2), 287–292.
  • Antoine D., Morel A., 1996, Oceanic primary production: 1. Adaptation of spectral light-photosynthesis model in view of application to satellite chlorophyll observations, Global Biogeochem. Cycles, 10, 42–55.
  • Bannister T.T., Weidemann A.D., 1984, The maximum quantum yield of phytoplankton photosynthesis ‘in situ’, J. Plankton Res., 6 (2), 275–294.
  • Bender M., Grande K., Johnson K., 1987, A comparison of four methods for determining planktonic community production, Limnol. Oceanogr., 32, 1085–1098.
  • Dera J., 1995, Underwater irradiance as a factor affecting primary production, Diss. and monogr., Inst. Oceanol. PAS, Sopot, 7, 110 pp.
  • Dubinsky Z., Falkowski P.G., Wiman K., 1986, Light harvesting and utilization by phytoplankton, Plant Cell Physiol., 27, 1335–1339.
  • Eppley R.W., 1980, Estimating phytoplankton growth rates in the central oligotrophic oceans, [in:] Primary productivity in the sea, P.G. Falkowski (ed.), Plenum Press., New York–London, 231–242.
  • Ernst E., Gunter K.P., Maske H., 1986, Biophysical processes of chlorophyll a fluorescence, [in:] The use of chlorophyll fluorescence measurements from space for separating constituents of sea-water, H. Grassl (ed.), GKSS Res. Centre, 1, 2, Geesthacht, Germany.
  • Falkowski P.G., Fujita Y., Ley A.C., Mauzerall D., 1986, Evidence for cyclic electron flow around photosystem II in Chlorella purenoidosa, Plant Physiol., 81, 310–312.
  • Falkowski P.G., Sukenik A., Herzik R., 1989, Nitrogen limitation in Isochrysis galbana (Haptophyceae), J. Phycol., 25, 471–478.
  • Fitzwater S.E., Knauer G.A., Martin J.H., 1982, Metal contamination and its effects on primary production measurement, Limnol. Oceanogr., 27, 544–551.
  • Genty B., Briantis J.M., Baker N.R., 1989, The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, 894, 183–192.
  • Green R.M., Geider R. J., Kolber Z., Falkowski P.G., 1992, Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae, Plant Physiol., 100, 565–575.
  • Jassby A.D., Platt T., 1976, Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnol. Oceanogr., 21, 540–547.
  • Kiefer D.A., Mitchell B.G., 1983, A simple, steady-state description of phytoplankton growth based on absorption cross-section and quantum efficiency, Limnol. Oceanogr., 28, 770–776.
  • Kiefer D.A., Chamberlain W. S., Booth C.R., 1989, Natural fluorescence of chlorophyll a: Relationship to photosynthesis and chlorophyll concentration in the western South Pacific gyre, Limnol. Oceanogr., 34, 868–881.
  • Kiefer D.A., Reynolds R.A., 1992, Advances in understanding phytoplankton fluorescence and photosynthesis, [in:] Primary productivity and biogeochemical cycles in the sea, P.G. Falkowski & A.D. Woodhead, Plenum, New York, 155–174.
  • Klughammer C., 1992, Entwicklung und Anwendung neuer absorptionspectroskopischer Methoden zur Charakterisierung des photosynthetischen Elektronentransports in isolierten Chloroplasten und intakten Bl¨attern, Ph.D. thesis, W¨urzburg University.
  • Koblentz-Mischke O. I., Vedernikov V. I., 1977, Primary production, [in:] Biology of the Ocean, M.E. Vinogradov (ed.), Nauka, Moskva, 2, 183–208, (in Russian).
  • Kolber Z., Zehr J., Falkowski P.G., 1988, Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II, Plant Physiol., 88, 72–79.
  • Kolber Z.,Wiman K.D., Falkowski P.G., 1990, Natural variability in photosynthetic energy conversion efficiency: a field study in the Gulf of Maine, Limnol. Oceanogr., 35, 72–79.
  • Langdon C., 1984, Dissolved oxygen monitoring system using a pulsed electrode: design, performance and evaluation, Deep-Sea Res., 31, 1357–1367.
  • Lanskaya L.A., 1971, Growing of algae, [in:] Ecological physiology of sea planktonic algae, K.M. Kailov (ed.), Nauk. Dumka, Kiyev, 5–21.
  • Laws E.A., 1991, Photosynthetic quotients, new production and net community production in the open sea, Deep-Sea Res., 38, 143–167.
  • Long S.P., Humphries S., Falkowski P.G., 1994, Photoinhibition of photosynthesis in nature, Ann. Rev. Plant Physiol. Plant Mol. Biol., 45, 655–662.
  • Mauzerall D., 1972, Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen, Proc. Nat. Acad. Sci. USA, 69, 1358–1362.
  • Morel A., 1991, Light and marine photosynthesis: a spectral model with geochemical and climatological implications, Prog. Oceanogr., 26, 263–306.
  • Myers J.E., 1987, Is there significant cyclic electron flow around photoreaction 1 in cyanobacteria?, Photosynth. Res., 14, 55–69.
  • Naletova I.A., Sapozhnikov V.V., 1995, Primary production in the Bering Sea and comparison of its determination by radiocarbon and oxygen methods: Complex investigations of the Bering Sea ecosystem, VNIRO, Moskva, 179–189, (in Russian).
  • Ostrowska M., 2000, Using the fluorometric method for marine photosynthesis investigations in the Baltic, Ph. D. thesis, Inst. Oceanol. PAN, Sopot, 119 pp., (in Polish).
  • Ostrowska M., Majchrowski R., Matorin D.N., Woźniak B., 2000a, Variability of the specific fluorescence of chlorophyll in the ocean. Part 1. Theory of classical ‘in situ’ chlorophyll fluorometry, Oceanologia, 42 (2), 203–219.
  • Ostrowska M., Matorin D.N., Ficek D., 2000b, Variability of the specific fluorescence of chlorophyll in the ocean. Part 2. Fluorometric method of chlorophyll a determination, Oceanologia, 42 (2), 221–229.
  • Sapozhnikov V.V., Gorunova V. S., Levenko B. A., Dulov L.E., Antal T.K., Matorin D.N., 2000, Comparison of primary production determination in Norway Sea by different methods, Engl. Okeanologiya, 40 (2), 234–240.
  • Schreiber U., Hormann H., Neubauer C., Klughammer C., 1995, Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis, Plant Physiol., 22, 209–220.
  • Slovacek R. E., Crowther D., Hind J., 1980, Relative activities of linear and cyclic electron flows during chloroplast CO2-fixation, Biochim. Biophys. Acta, 592, 495–505.
  • Sorokin Y. I., 1960, Method for measurement of primary production in the sea with 14C, Proc. All-Union Soc. Hydrobiol., 10, 235–254, (in Russian).
  • Steemann-Nielsen E., 1952, The use of radio-active carbon 14C for measuring organic production in the sea, J. Cons. Int. Explor. Mer., 18 (3), 117–140.
  • Vassiliev I.R., Prasil O., Wyman K.D., Kolber Z., Hanson A. K., Prentice J.E., Falkowski P.G., 1994, Inhibition of PS II photochemistry by PAR and UV radiation in natural phytoplankton communities, Photosynth. Res., 42, 61–64.
  • Vinberg G.G., 1969, Primary production of water bodies, Russ. Acad. Sci., Minsk, 348 pp., (in Russian).
  • Weis E., Berry J.T., 1987, Quantum efficiency of photosystem II in relation to energy-dependent quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, 894, 198–208.
  • Williams P. J., Jenkinson N.W., 1982, A transportable microprocessor controlled Winkler titration suitable for field and shipboard use, Limnol. Oceanogr., 27, 576–584.
  • Woźniak B., Dera J., Koblentz-Mishke O. J., 1992, Bio-optical relationships for estimating primary production in the Ocean, Oceanologia, 33 (1), 5–38.
  • Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. J., DareckiM., 1997, ‘IOP AS initial model’ of marine primary production for remote sensing applications, Oceanologia, 39 (4), 377–395.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1f51308b-9f47-44f0-baba-324664db84d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.