PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 46 | 3 |

Tytuł artykułu

Construction and optimisation of a computer model for a bacterial membrane

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The main steps in the construction of a computer model for a bacterial membrane are described. The membrane has been built of 72 lipid molecules, 54 of which being 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylethanolamine (POPE) and 18 - 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidyl-rac-glycerol (POPG) molecules (thus in the proportion of 3:1). The membrane was hydrated with 1955 water molecules (approximately 27 water molecules per lipid). To neutralise the electronic charge (-e) on each POPG molecule, 18 sodium ions (Na+) were added to the membrane close to the POPG phosphate groups. The atomic charges on the POPE and POPG headgroups were obtained from ab initio quantum mechanical restrained electrostatic potential fitting (RESP) (Bayly et al., 1993, J. Phys. Chem. 97, 10269) using the GAMESS program at the 6-31G* level (Schmidt et al., 1993, J. Comput. Chem. 14, 1347). The model constructed in this way provided an initial structure for subsequent molecular dynamics simulation studies intended to elucidate the atomic level interactions responsible for the structure and dynamics of the bacterial membrane.

Wydawca

-

Rocznik

Tom

46

Numer

3

Opis fizyczny

p.631-639,fig.

Twórcy

autor
  • Jagiellonian University, A.Mickiewicza 3, 31-120 Krakow, Poland

Bibliografia

  • Bayly, C.I., Cieplak, P., Cornell, W.D. & Kollman, P.A. (1993) A well-behaved electrostatic poten­tial based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 97, 10269-10280.
  • Boggs, J.M. (1987) Lipid intermolecular hydrogen bonding: Influence on structural organization and membrane function. Biochim. Biophys. Acta 906, 353-404.
  • Bowen, P.J. & Lewis, T.J. (1983) Electrical interac­tions in phospholipid layers. Thin Solid Films 99, 157-163.
  • Charifson, P.S., Hiskey, R.G. & Pedersen, L.G. (1990) Construction and molecular modeling of phospholipid surfaces. J. Comp. Chem. 11, 1181-1186.
  • Egberts, E., Marrink, S.-J. & Berendsen, H.J.C. (1994) Molecular dynamics simulation of a phospholipid membrane. Eur. Biophys. J. 22, 432-436.
  • Giinter, P. (1998] Structure calculation of biologi­cal macromolecules from NMR data. Quart. Rev. Biophys. 31, 145-237.
  • Hauser, H., Pascher, I., Pearson, R.H. & Sundell, S. (1981) Preferred conformation and molecu­lar packing of phosphatidylethanolamine and phosphatidylcholine. Biochim. Biophys. Acta 650, 21-51.
  • Havel, T.F. (1990) The sampling properties of some distance geometry algorithms applied to unconstrained polypeptide chains: A study of 1830 independently computed conformations. Biopolymers 29, 1565-1585.
  • Hitchcock, P.B., Mason, R., Thomas, K.M. & Shipley, G.G. (1974) Structural chemistry of 1,2-dilauroyl-DL-phosphatidylethanolamine:
  • Molecular conformation and intermolecular packing of phospholipids. Proc. Nat AcacL Sci. U.S.A 71, 3036-3040.
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R. & Klein, M.L. (1983) Compari­son of simple potential functions for simulat­ing liquid water. J. Chem. Phys. 79,926-935.
  • Jorgensen, W.L. & Tirado-Rives, J. (1988) The OPLS potential functions for proteins. Energy minimization for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657- 1666.
  • Kraulis, P. (1991) MOLSCRIPT: A program to pro­duce both detailed and schematic plots of pro­teins. J. Appl CrysU 24, 946-950.
  • Lopez Cascales, J.J., Garcia de la Torre, J., Marrink, S J. & Berendsen, H.J.C. (1996) Mo­lecular dynamics simulation of charged biolog­ical membrane. J. Chem. Phys. 104, 2713- 2720.
  • Marsh, D., Watts, A. & Smith, I.C. (1983) Dynamic structure and phase behavior of dimyristoyl- phosphatidylethanolamine bilayers studied by deuterium nuclear magnetic resonance. Bio­chemistry 22, 3023-3026.
  • Matsuzaki, K., Sugishita, K., Fujii, N. & Miyajima, K. (1995) Molecular basis for membrane selec­tivity of an antimicrobial peptide, magainin 2. Biochemistry 34, 3423-3429.
  • Merritt, E.A. & Bacon, D.J. (1997) Raster3D: Photorealistic molecular graphics. Methods EnzymoL 277, 505-524.
  • Murzyn, K., R6g, T. & Pasenkiewicz-Gierula, M. (1999) Comparison of the conformation and the dynamics of saturated and monounsatu- rated hydrocarbon chains of phosphatidyl­cholines. Curr. Tbp. Biophys. 23. 89-96.
  • Pascher, I., Sundell, S., Harlos., K. & Eibl, H. (1987) Conformation and packing properties of membrane lipids: The crystal structure of sodium dimyristoylphosphatidylglycerol. Bio­chim. Biophys. Acta 896, 77-88.
  • Pasenkiewicz-Gierula, M., Takaoka, Y., Miyagawa, H., Kitamura, K. & Kusumi, A. (1997) Hydro­gen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dy­namics simulation: Location, geometry, and lipid-lipid bridging via hydrogen-bonded wa­ter. J. Phys. Chem. 101, 3677-3691.
  • Pasenkiewicz-Gierula, M., Takaoka, Y., Miyagawa, H., Kitamura, K. & Kusumi, A. (1999) Charge pairing of headgroups in phosphatidylcholine membranes: A molecular dynamics simulation study. Biophys. J. 76, 1228-1240.
  • Perlman, D.A., Case, D.A., Caldwell, J.C., Seibel, G.L., Singh, U.C., Weiner, P.K. & KoUman, P.A. (1991) Amber 4.0, University of Califor­nia, San Francisco.
  • Rand, R.P. & Parsegian, V.A. (1989) Hydration forces between phospholipid bilayers. Bio- chim. Biophys. Acta 988, 351-376.
  • Ryckaert, J.P., Cicotti, G. & Berendsen, H.J.C. (1977) Numerical integration of the Cartesian equations of motion of a system with con­straints: Molecular dynamics of n-alkanes. J. Comp. Phys. 22, 327-341.
  • Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert. S.T., Gordon, M., Jensen, J.H., Koseki, S., Mateunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupi6, M. & Montgomery, J.A. (1993) General atomic and molecular elec­tronic structure system. J. Comput. Chem 14, 1347-1363.
  • Segrest, J.P., De Loof, H., Dohlman, J.G., Brouillette, C.G. & Anantharmaiah, G.M. (1990) Amphipathic helix motif: Classes and properties. Proteins 8, 103-117.
  • Sundaralingham, M. (1972) Molecular structures and conformations of the phospholipids and sphingomyelins. Ann. N.Y. Acad. Sci. 195, 324-355.
  • van Klompenburg, W. & de Kruiff, B. (1998) The role of anionic lipids in protein insertion and translocation in bacterial membranes. J. Membr. Biol 162, 1-7.
  • Watts, A., Harlos, K. & Marsh, D. (1981) Charge- induced tilt in ordered-phase phosphatidyl- glycerol bilayers evidence from X-ray diffrac­tion. Biochim. Biophys. Acta 654, 91-96.
  • Watte, A. & Marsh, D. (1981) Saturation transfer ESR studies of molecular motion in phospha- tidylglycerol bilayers in the gel phase: Effects of pretran8itions and pH titration. Biochim. Biophys. Acta 642, 231-241.
  • Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G. & Weiner, P. (1984) A new force field for molecular simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765-784.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1eca99b8-543d-4cbf-a8ed-b6114ab3e055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.