PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 55 | 1,2 |

Tytuł artykułu

Brain-gut axis and its role in the control of food intake

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Gastrointestinal tract (GIT) and nervous system, both central (CNS) and enteric (ENS), are involved in two-way extrinsic communication by parasympathetic and sympathetic nerves, each comprising efferents fibers such as cholinergic and noradrenergic , respectively, and afferent sensory fibers required for gut-brain signaling. Afferent nerves are equipped with numerous sensors at their terminals in the gut related to visceral mechano- chemo- and noci-receptors, whose excitations may trigger a variety of visceral reflexes regulating GIT functions, including the appetitive behaviour. Food intake depends upon various influences from the CNS as well as from the body energy stores (adipocytes) that express and release the product of Ob gene, leptin, in proportion to fat stored and acting in long-term regulation of food intake. Leptin acts through receptors (Ob-R) present in afferent visceral nerves and hypothalamic arcuate nucleus (ARC), whose neurons are capable of expressing and releasing neuropeptide Y (NPY) and agouti related protein (AgRP) that activate the ingestive behaviour through paraventricular nucleus (PVN) (“feeding center”). In addition, to this long-term regulation, a short-term regulation, on meal-to-meal basis, is secured by several gut hormones, such as cholecystokinin (CCK), peptides YY (PYY) and oxyntomodulin (OXM), released from the endocrine intestinal cells and acting via G-protein coupled receptors (GPCR) either on afferent nerves or directly on ARC neurons, which in turn inhibit expression and release of food-intake stimulating NPY and AgRP, thereby inducing satiety through inhibition of PVN. In contrast, during fasting, the GIT, especially oxyntic mucosa, expresses and releases appetite stimulating (orexigenic) factors such as ghrelin and orexins (OX) -A and OX-B, and cannabinoid CB1 agonist. Ghrelin activates growth-hormone secretagogue receptor (GHS-R) in hypothalamic ARC and stimulates growth hormone (GH) release and in vagal afferents to promote the expression and release of hypothalamic NPY and AgRP stimulating PVN and driving ingestive behaviour. The balance and interaction between anorexigenic (CCK, PYY, OXM) and orexigenic (ghrelin and OX) factors originating from GIT appears to play an important role in short-term regulation of food intake and growth hormone (GH) release. An impairment of this balance may result in disorders of feeding behaviour and weight gain (obesity) or weight loss (cachexia).

Wydawca

-

Rocznik

Tom

55

Numer

1,2

Opis fizyczny

p.137-154,fig.,ref.

Twórcy

  • Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland
autor

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1c708924-3ecf-432a-8bc4-8ccde54fdad2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.