PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 09 | 2 |

Tytuł artykułu

Caveolins: structure and function in signal transduction

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The caveolin family proteins are typically associated with microdomains that are found in the plasma membrane of numerous cells. These microdomains are referred to as/called caveolae. Caveolins are small proteins (18-24 kDa) that have a hairpin loop conformation with both the N and C termini exposed to the cytoplasm. Apart from having a structural function within caveolae, these proteins have the capacity to bind cholesterol as well as a variety of proteins, such as receptors, Src-like kinases, G-proteins, H-Ras, MEK/ERK kinases and nitric oxide synthases, which are involved in signal transduction processes. Considerable data allow the assumption to be made that the majority of the interactions with signaling molecules hold them in an inactive or repressed state. The activity of caveolins seems to be dependent on its specific post-translation modifications. It is suggested that caveolins fulfill a role in the modulation of cellular signaling cascades.

Wydawca

-

Rocznik

Tom

09

Numer

2

Opis fizyczny

p.195-220,fig.,ref.

Twórcy

  • University of Lodz, Banacha 12-16, 90-237 Lodz, Poland
autor

Bibliografia

  • 1. Parton, R.G. Caveolae and caveolins. Curr. Opin. Cell Biol. 8 (1996) 542-548.
  • 2. Okamoto, T., Schlegel, A., Scherer, P.E. and Lisanti, M.P. Caveolins, a family of scaffolding proteins for organizing “Preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273 (1998) 5419-5422.
  • 3. Couet, J., Belanger, M.M., Roussel, E. and Drolet, M-C. Cell biology of caveolae and caveolin. Adv. Drug Deliv. Rev. 49 (2001) 223-235.
  • 4. Fernandez, I., Ying, Y., Albanesi, J. and Anderson, R.G.W. Mechanism of caveolin filament assembly. Proc. Natl. Acad. Sci. USA 99 (2002) 11193-11198.
  • 5. Harder, T. and Simons, K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr. Opin. Cell Biol. 9 (1997) 534-542.
  • 6. Westermann, M., Leutbecher, H. and Meyer, H.W. Membrane structure of caveolae and isolated caveolin-rich vesicles. Histochem. Cell Biol. 111 (1999) 71-81.
  • 7. Hooper, N.M. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae. Mol. Membr. Biol. 16 (1999) 145-156.
  • 8. Stan, R-V. Structure and function of endothelial caveolae. Microsc. Res. Tech. 57 (2002) 350-364.
  • 9. Simons, K. and Ehehalt, R. Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110 (2002) 597-603.
  • 10. van Deurs, B., Roepstorff, K., Hommelgaard, A.M. and Sandvig, K. Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 13 (2003) 92-100.
  • 11. Stahlhut, M. and van Deurs, B. Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol. Biol. Cell 11 (2000) 325-337.
  • 12. Parton, R.G., Joggerst, B. and Simons, K. Regulated internalization of caveolae. J. Cell Biol. 127 (1994) 1199-1215.
  • 13. Kurzchalia, T.V. and Parton, R.G. And still they are moving... Dynamic properties of caveolae. FEBS Lett. 389 (1996) 52-54.
  • 14. Pol, A., Calvo, M., Lu, A. and Enrich, C. The “early-sorting” endocytic compartment of rat hepatocytes is involved in the intracellular pathway of caveolin-1 (VIP-21). Hepatology 29 (1999) 1848-1857.
  • 15. Pelkmans, L., Püntener, D. and Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296 (2002) 535-539.
  • 16. Oh, P. and Schnitzer, J.E. Immunoisolation of caveolae with high affinity antibody binding to the oligomeric caveolin cage. J. Biol. Chem. 274 (1999) 23144-23154.
  • 17. Anderson, R.G.W. Caveolae: Where incoming and outgoing messengers meet. Proc. Natl. Acad. Sci. USA 90 (1993) 10909-10913.
  • 18. Fujimoto, T. Calcium pump of the plasma membrane is localized in caveolae. J. Cell Biol. 120 (1993) 1147-1157.
  • 19. Lisanti, M.P., Scherer, P.E., Vidugiriene, J., Tang, Z., Hermanowski-Vosatka, A., Tu, Y.H., Cook, R.F. and Sargiacomo, M. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J. Cell Biol. 126 (1994) 111-126.
  • 20. Fielding, C.J. and Fielding, P.E. Caveolae and intracellular trafficking of cholesterol. Adv. Drug Deliv. Rev. 49 (2001) 251-264.
  • 21. Gumbleton, M. Caveolae as potential macromolecule trafficking compartments within alveolar epithelium. Adv. Drug Deliv. Rev. 49 (2001) 281-300.
  • 22. Matveev, S., Li, X., Everson, W. and Smart E.J. The role of caveolae and caveolin in vesicle-dependent and vesicle-independent trafficking. Adv. Drug Deliv. Rev. 49 (2001) 237-250.
  • 23. Le, P.U., Guay, G., Altschuler, Y. and Nabi, I.R. Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J. Biol. Chem. 277 (2002) 3371-3379.
  • 24. Liu, P., Rudick, M. and Anderson, R.G.W. Multiple functions of caveolin-1. J. Biol. Chem. 277 (2002) 41295-41298.
  • 25. Pelkmans, L. and Helenius, A. Endocytosis via caveolae. Traffic 3 (2002) 311-320.
  • 26. Fivaz, M., Abrami, L. and van der Goot, F.G. Landing on lipid rafts. Trends Cell Biol. 9 (1999) 212-213.
  • 27. Naslavsky, N., Shmeeda, H., Friedlander, G., Yanai, A., Futerman, A.H., Barenholz, Y. and Taraboulos, A. Sphingolipid depletion increases formation of the scrapie prion protein in neuroblastoma cells infected with prions. J. Biol. Chem. 274 (1999) 20763-20771.
  • 28. Shin, J.-S., Gao, Z. and Abraham, S.N. Involvement of cellular caveolae in bacterial entry into mast cells. Science 289 (2000) 785-788.
  • 29. Lavie, Y., Fiucci, G., Czarny, M. and Liscovitch, M. Changes in membrane microdomains and caveolae constituents in multidrug-resistant cancer cells. Lipids 34 (1999) S57-S63.
  • 30. Lavie, Y., Fiucci, G. and Liscovitch, M. Upregulation of caveolin in multidrug resistant cancer cells: functional implications. Adv. Drug Deliv. Rev. 49 (2001) 317-323.
  • 31. Engelman, J.A., Zhang, X.L. and Lisanti, M.P. Genes encoding human caveolin-1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett. 436 (1998) 403-410.
  • 32. Engelman, J.A., Zhang, X.L., Galbiati, F. and Lisanti, M.P. Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). FEES Lett. 429 (1998b) 330-336.
  • 33. Engelman, J.A., Zhang, X.L. and Lisanti, M.P. Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). FEES Lett. 448 (1999) 221-230.
  • 34. Hurlstone, A.F.L., Reid, G., Reeves, J.R., Fraser, J., Strathdee, G., Rahilly, M., Parkinson E.K. and Black D.M. Analysis of the caveolin-1 gene at human chromo-some 7q31.1 in primary tumours and tumour-derived cell lines. Oncogene 18 (1999) 1881-1890.
  • 35. Sotgia, F., Minetti, C. and Lisanti, M.P. Localization of the human caveolin-3 gene to the D3S18/D3S4163/D3S4539 locus (3p25), in close proximity to the human oxytocin receptor gene. FEBS Lett. 452 (1999) 177-180.
  • 36. Fra, A.M., Pasqualetto, E., Mancini, M. and Sitia, R. Genomic organization and transcriptional analysis of the human genes coding for caveolin-1 and caveolin-2. Gene 243 (2000) 75-83.
  • 37. Kogo, H. and Fujimoto, T. Caveolin-1 isoforms are encoded by distinct mRNAs. FEBS Lett. 465 (2000) 119-123.
  • 38. Gleeney Jr., J.R. The sequence of human caveolin reveals identity with VIP21, a component of transport vesicles. FEBS Lett. 314 (1992a) 45-48.
  • 39. Kurzchalia, T.V., Dupree, P., Parton, R.G., Kellner, R., Virta, H., Lehnert, M. and Simons, K. VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J. Cell Biol. 118 (1992) 1003-1014.
  • 40. Rothberg, G.K., Heuser, J.E., Donzell, W.C., Ying, Y.S., Glenney, J.R. and Anderson, R.G.W. Caveolin, a protein component of caveolae membrane coats. Cell 68 (1992) 673-682.
  • 41. Dupree, P., Parton, R.G., Raposo, G., Kurzchalia, T.V. and Simons, K. Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J. 12 (1993) 1597-1605.
  • 42. Kurzchalia, T.V., Dupree, P. and Monier, S. VIP21-caveolin, a protein of the trans-Golgi network and caveolae. FEBS Lett. 346 (1994) 88-91.
  • 43. Scherer, P.E., Tang, Z., Chun, M., Sargiacomo M., Lodish H.F. and Lisanti, M.P. Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. J. Biol. Chem. 270 (1995) 16395-16401.
  • 44. Fujimoto, T., Kogo, H., Nomura, R. and Une, T. Isoforms of caveolin-1 and caveolar structure. J. Cell Sci. 113 (2000) 3509-3517.
  • 45. Schlegel, A., Schwab, R.B., Scherer, P.E. and Lisanti M.P. A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. J. Biol. Chem. 274 (1999) 22660-22667.
  • 46. Schlegel, A. and Lisanti M.P. A molecular dissection of caveolin-1 membrane attachment and oligomerization. J. Biol. Chem. 275 (2000) 21605-21617.
  • 47. Sotgia, F., Lee, J.K., Das, K., Bedford, M., Petrucci, T.C., Macioce, P., Sargiacomo, M., Bricarelli, F.D., Minetti, C., Sudol, M. and Lisanti M.P. Caveolin-3 directly interacts with the C-terminal tail of β-dystroglycan. J. Biol. Chem. 275 (2000) 38048-38058.
  • 48. Das, K., Lewis, R.Y., Scherer P.E. and Lisanti M.P. The membrane-spanning domains of caveolins-1 and -2 mediate the formation of caveolin hetero-oligomers. J. Biol. Chem. 274 (1999) 18721-18728.
  • 49. Glenney, J.R., Jr. and Soppet, D. Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc. Natl. Acad. Sci. USA 89 (1992) 10517-10521.
  • 50. Dietzen, D.J., Hastings, W.R. and Lublin D.M. Caveolin is palmitoylated on multiple cysteine residues. J. Biol. Chem. 270 (1995) 6838-6842.
  • 51. Monier, S., Parton, R.G., Vogel, F., Behlke, J., Henske, A. and Kurzchalia, T.V. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol. Biol. Cell 6 (1995) 911-927.
  • 52. Couet, J., Li, S., Okamoto, T., Ikezu, T. and Lisanti, M.P. Identification of peptide and protein ligands for the caveolin-scaffolding domain. J. Biol. Chem. 272 (1997) 6525-6533.
  • 53. Woodman, S.E., Schlegel, A., Cohen, A.W. and Lisanti, M.P. Mutational analysis identifies a short atypical membrane attachment sequence (KYWFYR) within caveolin-1. Biochemistry 41 (2002) 3790-3795.
  • 54. Murata, M., Peränen J., Schreiner, R., Wieland, F., Kurzchalia, T.V. and Simons, K. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl. Acad. Sci. USA 92 (1995) 10339-10343.
  • 55. Sargiacomo, M., Scherer, P.E., Tang, Z., Kübler, E., Song, K.S., Sanders, M.C. and Lisanti, M.P. Oligomeric structure of caveolin: Implications for caveolae membrane organization. Proc. Natl. Acad. Sci. USA 92 (1995) 9407-9411.
  • 56. Song, K.S., Tang, Z., Li, S. and Lisanti, M.P. Mutational analysis of the properties of caveolin-1. J. Biol. Chem. 272 (1997) 4398-4403.
  • 57. Machleidt, T., Li, W-P., Liu, P. and Anderson, R.G.W. Multiple domains in caveolin-1 control its intracellular traffic. J. Cell Biol. 148 (2000) 17-28.
  • 58. Scherer, P.E., Lewis, R.Y., Volonté, D., Engelman, J.A., Galbiati, F., Couet, J., Kohtz, D.S., van Donselaar, E., Peters, P. and Lisanti, M.P. Cell-type and tissue-specific expression of caveolin-2. J. Biol. Chem. 272 (1997) 29337-29346.
  • 59. Razani, B., Wang, X.B., Engelman, J.A., Battista, M., Lagaud, G., Zhang, X.L., Kneitz, B., Hou, H., Jr., Christ, G.J., Edelmann, W. and Lisanti, M.P. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol. Cell. Biol. 22 (2002) 2329-2344.
  • 60. Fra, A.M., Williamson, E., Simons, K. and Parton, R.G. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl. Acad. Sci. USA 92 (1995) 8655-8659.
  • 61. Li, S., Galbiati, F., Volonte, D., Sargiacomo, M., Engelman, J.A., Das, K., Scherer, P.E. and Lisanti, M.P. Mutational analysis of caveolin-induced vesicle formation. FEBS Lett. 434 (1998) 127-134.
  • 62. Lipardi, C., Mora, R., Colomer, V., Paladino, S., Nitsch, L., Rodriguez-Boulan, E. and Zurzolo, C. Caveolin transfection results in caveolae formation but not apical sorting of glycosylphosphatidylinositol (GPI)-anchored proteins in epithelial cells. J. Cell Biol. 140 (1998) 617-626.
  • 63. Vogel, U., Sandvig, K. and van Deurs, B. Expression of caveolin-1 and polarized formation of invaginated caveolae in Caco-2 and MDCK II cells. J. Cell Sci. 111 (1998) 825-832.
  • 64. Razani, B., Engelman, J.A., Wang, X.B., Schubert, W., Zhang, X.L., Marks, C.B., Macaluso, F., Russell, R.G., Li, M., Pestell, R.G., Di Vizio, D., Hou, H. Jr., Kneitz, B., Lagaud, G., Christ, G.J., Edelmann, W. and Lisanti, M.P. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276 (2001) 38121-38138.
  • 65. Zhao, Y.-Y., Liu, Y., Stan, R.-V., Fan, L., Gu, Y., Dalton, N., Chu, P.-H., Peterson, K., Ross, J. Jr. and Chien, K.R. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc. Natl. Acad. Sci. USA 99 (2002) 11375-11380.
  • 66. Li, S., Seitz, R. and Lisanti, M.P. Phosphorylation of caveolin by Src tyrosine kinases. J. Biol. Chem. 271 (1996) 3863-3868.
  • 67. Monier, S., Dietzen, D.J., Hastings, W.R., Lublin, D.M. and Kurzchalia, T.V. Oligo-merization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett. 388 (1996) 143-149.
  • 68. Parat, M.-O. and Fox, P.L. Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible. J. Biol. Chem. 276 (2001) 15776-15782.
  • 69. Galbiati, F., Volonté, D., Meani, D., Milligan, G., Lublin, D.M., Lisanti, M.P. and Parenti, M. The dually acylated NH2-terminal domain of Gi1α is sufficient to target a green fluorescent protein reporter to caveolin-enriched plasma membrane domains. J. Biol. Chem. 274 (1999) 5843-5850.
  • 70. Lee, H., Woodman, S.E., Engelman, J.A., Volonté, D., Galbiati, F., Kaufman, H.L., Lublin, D.M. and Lisanti, M.P. Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase. J. Biol. Chem. 276 (2001) 35150-35158.
  • 71. Garver, W.S., Hossain, G.S., Winscott, M.M. and Heidenreich, R.A. The Npc1 mutation causes an altered expression caveolin-1, annexin II and protein kinases and phosphorylation of caveolin-1 and annexin II in murine livers. Biochim. Biophys. Acta 1453 (1999) 193-206.
  • 72. Roy, S., Luetterforst, R., Harding, A., Apolloni, A., Etheridge, M., Stang, E., Rolls, B., Hancock, J.F. and Parton, R.G. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat. Cell Biol. 1 (1999) 98-105.
  • 73. Zhu, Y., Liao, H.-L., Wang, N., Yuan, Y., Ma, K.-S., Verna, L. and Stemerman, M.B. Lipoprotein promotes caveolin-1 and Ras translocation to caveolae. Arterioscler. Thromb. Vasc. Biol. 20 (2000) 2465-2470.
  • 74. Matveev, S., Uittenbogaard, A., van der Westhuyzen, D. and Smart, E.J. Caveolin-1 negatively regulates SR-BI mediated selective uptake of high-density lipoprotein-derived cholesteryl ester. Eur. J. Biochem. 268 (2001) 5609-5616.
  • 75. Pol, A., Luetterforst, R., Lindsay, M., Heino, S., Ikonen, E. and Parton, R.G. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J. Cell Biol. 152 (2001) 1057-1070.
  • 76. Uittenbogaard, A. and Smart, E.J. Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J. Biol. Chem. 275 (2000) 25595-25599.
  • 77. Lee, H., Volonté, D., Galbiati, F., Iyengar, P., Lublin, D.M., Bregman, D.B., Wilson, M.T., Campos-Gonzalez, R., Bouzahzah B., Pestell, R.G., Scherer, P.E. and Lisanti, M.P. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: Identification of a c-Src/Cav-l/Grb7 signaling cassette. Mol. Endocrinol. 14 (2000) 1750-1775.
  • 78. Mastick, C.C., Sanguinetti, A.R., Knesek, J.H., Mastick G.S. and Newcomb, L.F. Caveolin-1 and a 29-kDa caveolin-associated protein are phosphorylated on tyrosine in cells expressing a temperature-sensitive v-Abl kinase. Exp. Cell Res. 266 (2001) 142-154.
  • 79. Sanguinetti, A.R. and Mastick, C.C. c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell. Signal. 15 (2003) 289-298.
  • 80. Nomura, R. and Fujimoto, T. Tyrosine-phosphorylated caveolin-1: immunolocalization and molecular characterization. Mol. Biol. Cell 10 (1999) 975-986.
  • 81. Scherer, P.E., Lisanti, M.P., Baldini, G., Sargiacomo, M., Mastick, C.C. and Lodish, H.F. Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J. Cell Biol. 127 (1994) 1233-1243.
  • 82. Schlegel, A., Arvan, P. and Lisanti, M.P. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. J. Biol. Chem. 276 (2001) 4398-4408.
  • 83. Mikol, D.D., Hong, H.L., Cheng, H.-L. and Feldman, E.L. Caveolin-1 expression in Schwann cells. Glia 27 (1999) 39-52.
  • 84. Gargalovic, P. and Dory, L. Caveolin-1 and caveolin-2 expression in mouse macro-phages. J. Biol. Chem. 276 (2001) 26164-26170.
  • 85. Li, W.P., Liu, P., Pilcher, B.K. and Anderson, R.G.W. Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J. Cell Sci. 114 (2001) 1397-1408.
  • 86. Li, S., Couet, J. and Lisanti, M.P. Src tyrosine kinases, Gα subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. J. Biol. Chem. 271 (1996) 29182-29190.
  • 87. Scherer, P.E., Okamoto, T., Chun, M., Nishimoto, I., Lodish H.F. and Lisanti M.P. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl. Acad. Sci. USA 93 (1996) 131-135.
  • 88. Fujimoto, T., Kogo, H., Ishiguro, K., Tauchi, K. and Nomura, R. Caveolin-2 is targeted to lipid droplets, a new “membrane domain” in the cell. J. Cell Biol. 152 (2001) 1079-1085.
  • 89. Galbiati, F. Volonté, D., Gil, O., Zanazzi, G., Salzer, J.L., Sargiacomo, M., Scherer, P.E., Engelman, J.A., Schlegel, A., Parenti, M., Okamoto, T. and Lisanti, M.P. Expression of caveolin-1 and -2 in differentiating PC 12 cells and dorsal root ganglion neurons: caveolin-2 is up-regulated in response to cell injury. Proc. Natl. Acad. Sci. USA 95 (1998) 10257-10262.
  • 90. Scheiffele, P., Verkade, P., Fra, A.M., Virta, H., Simons, K. and Ikonen, E. Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J. Cell Biol. 140 (1998) 795-806.
  • 91. Mora, R., Bonilha, V.L., Marmorstein, A., Scherer, P.E., Brown, D., Lisanti, M.P. and Rodriguez-Boulan, E. Caveolin-2 localizes to the Golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1. J. Biol. Chem. 274 (1999) 25708-25717.
  • 92. Parolini, I., Sargiacomo, M., Galbiati, F., Rizzo, G., Grignani, F., Engelman, J.A., Okamoto, T., Ikezu, T., Scherer, P.E., Mora, R., Rodriguez-Boulan, E., Peschle, C. and Lisanti, M.P. Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. J. Biol. Chem. 274 (1999) 25718-25725.
  • 93. Lee, H., Park, D.S., Wang, X.B., Scherer, P.E., Schwartz, P.E. and Lisanti, M.P. Src-induced phosphorylation of caveolin-2 on tyrosine 19. J. Biol. Chem. 277 (2002) 34556-34567.
  • 94. Sowa, G., Pypaert, M., Fulton, D. and Sessa, W.C. The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation. Proc. Natl. Acad. Sci. USA 100 (2003) 6511-6516.
  • 95. Way, M. and Parton, R.G. M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett. 376 (1995) 108-112.
  • 96. Song, K.S., Scherer, P.E., Tang, Z., Okamoto, T., Li, S., Chafel, M., Chu, C., Kohtz, D.S. and Lisanti, M.P. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. J. Biol. Chem. 271 (1996) 15160-15165.
  • 97. Tang, Z., Scherer, P.E., Okamoto, T., Song, K., Chu, C., Kohtz, D.S., Nishimoto, I., Lodish, H.F. and Lisanti, M.P. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271 (1996) 2255-2261.
  • 98. Parton, R.G., Way, M., Zorzi, N. and Stang, E. Caveolin-3 associated with developing T-tubules during muscle differentiation. J. Cell Biol. 136 (1997) 137-154.
  • 99. Schwab, W., Galbiati, F., Volonte, D., Hempel, U., Wenzel, K.-W., Funk, R.H.W., Lisanti, M.P. and Kasper, M. Characterization of caveolins from cartilage: expression of caveolin-1, -2 and -3 in chondrocytes and in alginate cell culture of the rat tibia. Histochem. Cell Biol. 112 (1999) 41-49.
  • 100. Galbiati, F., Engelman, J.A., Volonte, D., Zhang, X.L., Minetti, C., Li, M., Hou, H. Jr., Kneitz, B., Edelmann, W. and Lisanti, M.P. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and T-tubule abnormalities. J. Biol. Chem. 276 (2001) 21425-21433.
  • 101. Woodman, S.E., Park, D.S., Cohen, A.W., Cheung, M.W.-C., Chandra, M., Shirani, J., Tang, B., Jelicks, L.A., Kitsis, R.N., Christ, G.J., Factor, S.M., Tanowitz, H.B. and Lisanti, M.P. Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J. Biol. Chem. 277 (2002) 38988-38997.
  • 102. Galbiati, F., Volonté, D., Minetti, C., Chu, J.B. and Lisanti, M.P. Phenotypic behavior of caveolin-3 mutations that cause autosomal dominant limb girdle muscular dystrophy (LGMD-1C). J. Biol. Chem. 274 (1999) 25632-25641.
  • 103. Repetto, S., Bado, M., Broda, P., Lucania, G., Masetti, E., Sotgia, F., Carbone, I., Pavan, A., Bonilla, E., Cordone, G., Lisanti, M.P. and Minetti, C. Increased number of caveolae and caveolin-3 overexpression in Duchenne muscular dystrophy. Biochem. Biophys. Res. Commun. 261 (1999) 547-550.
  • 104. Müller, G. and Frick, W. Signalling via caveolin: involvement in the crosstalk between phosphoinositolglycans and insulin. Cell. Mol. Life Sci. 56 (1999) 945-970.
  • 105. Smart, E.J., Graf, G.A., McNiven, M.A., Sessa, W.C., Engelman, J.A., Scherer, P.E., Okamoto, T. and Lisanti, M.P. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. 19 (1999) 7289-7304.
  • 106. Razani, B. and Lisanti, M.P. Caveolin-deficient mice: insights into caveolar function and human disease. J. Clin. Invest. 108 (2001) 1553-1561.
  • 107. Zajchowski, L.D. and Robbins, S.M. Lipid rafts and little caves. Eur. J. Biochem. 269 (2002) 737-752.
  • 108. Smart, E.J., Ying, Y-S., Mineo C. and Anderson, R.G.W. A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. USA 92 (1995) 10104-10108.
  • 109. Mineo, C., James, G.L., Smart, E.J. and Anderson, R.G.W. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J. Biol. Chem. 271 (1996) 11930-11935.
  • 110. Song, K.S., Li, S., Okamoto, T., Quilliam, L.A., Sargiacomo, M. and Lisanti, M.P. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. J. Biol. Chem. 271 (1996) 9690-9697.
  • 111. Couet, J., Sargiacomo, M. and Lisanti, M.P. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. J. Biol. Chem. 272 (1997) 30429-30438.
  • 112. Liu, J., Oh, P., Horner, T., Rogers, R.A. and Schnitzer, J.E. Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-an-chored protein microdomains. J. Biol. Chem. 272 (1997) 7211-7222.
  • 113. Wu, C., Butz S., Ying Y. and Anderson, R.G.W. Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J. Biol. Chem. 272 (1997) 3554-3559.
  • 114. Engelman, J.A., Chu, C., Lin, A., Jo, H., Ikezu, T., Okamoto, T., Kohtz, D.S. and Lisanti, M.P. Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett. 428 (1998) 205-211.
  • 115. Engelman, J.A., Lee, R.J., Karnezis, A., Bearss, D.J., Webster, M., Siegel, P., Muller, W.J., Windle, J.J., Pestell, R.G. and Lisanti, M.P. Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. J. Biol. Chem. 273 (1998) 20448-20455.
  • 116. Bilderback, T.R., Gazula, V.-R., Lisanti, M.P. and Dobrowsky, R.T. Caveolin interacts with Trk A and p75NTR and regulates neurothropin signaling pathways. J. Biol. Chem. 274 (1999) 257-263.
  • 117. Wary, K.K., Mariotti, A., Zurzolo, C. and Giancotti, F.G. A requirement of caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94 (1998) 625-634.
  • 118. Müller, G., Jung, C., Wied, S., Welte, S., Jordan, H. and Frick, W. Redistribution of glycolipid raft domain components induces insulin-mimetic signaling in rat adipocytes. Mol. Cell. Biol. 21 (2001) 4553-4567.
  • 119. Vargas, L., Nore, B.F., Berglöf, A., Heinonen, J.E., Mattsson, P.T., Smith, C.I.E., Mohamed, A.J. Functional interaction of caveolin-1 with Bruton’s tyrosine kinase and Bmx. J. Biol. Chem. 277 (2002) 9351-9357.
  • 120. Razani, B., Zhang. X.L., Bitzer, M., von Gersdorff, G., Böttinger, E.P. and Lisanti, M.P. Caveolin-1 regulates transforming growth factor (TGF)-β/SMAD signaling through an interaction with TGF-β type I receptor. J. Biol. Chem. 276 (2001) 6727-6738.
  • 121. Li, S., Okamoto, T., Chun, M., Sargiacomo, M., Casanova, J.E., Hansen, S.H., Nishimoto, I. and Lisanti, M.P. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J. Biol. Chem. 270 (1995) 15693-15701.
  • 122. Toya, Y., Schwencke, C., Couet, J., Lisanti, M.P. and Ishikawa, Y. Inhibition of adenylyl cyclase by caveolin peptides. Endocrinology 139 (1998) 2025-2031.
  • 123. Razani, B., Rubin, C.S. and Lisanti, M.P. Regulation of cAMP-mediated signal transduction via interaction of caveolins with the catalytic subunit of protein kinase A. J. Biol. Chem. 274 (1999) 26353-26360.
  • 124. Schwencke, C., Yamamoto, M., Okumura, S., Toya, Y., Kim, S.-J. and Ishikawa, Y. Compartmentation of cyclic adenosine 3’,5’-monophosphate signaling in caveolae. Mol. Endocrinol. 13 (1999) 1061-1070.
  • 125. Schreiber, S., Fleischer, J., Breer, H. and Boekhoff, I. A possible role for caveolin as a signaling organizer in olfactory sensory membranes. J. Biol. Chem. 275 (2000) 24115-24123.
  • 126. Oh, P. and Schnitzer, J.E. Segregation of heterotrimeric G proteins in cell surface microdomains. Mol. Biol. Cell 12 (2001) 685-698.
  • 127. Xiang,Y., Rybin, V.O., Steinberg, S.F. and Kobilka, B. Caveolar localization dictates physiologic signaling of β2-adrenoceptors in neonatal cardiac myocytes. J. Biol. Chem. 277 (2002) 34280-34286.
  • 128. Schlegel, A., Wang, C., Katzenellenbogen, B.S., Pestell, R.G. and Lisanti, M.P. Caveolin-1 potentiates estrogen receptor α (ERα) signaling. J. Biol. Chem. 274 (1999) 33551-33556.
  • 129. Lu, M.L., Schneider, M.C., Zheng, Y., Zhang, X. and Richie, J.P. Caveolin-1 interacts with androgen receptor. J. Biol. Chem. 276 (2001) 13442-13451.
  • 130. Schlegel, A., Wang, C., Pestell, R.G. and Lisanti, M.P. Ligand-independent activation on oestrogen receptor α by caveolin-1. Biochem. J. 359 (2001) 203-210.
  • 131. Razandi, M., Oh, P., Pedram, A., Schnitzer, J. and Levin, E.R. ERs associate with and regulate the production of caveolin: Implications for signaling and cellular actions. Mol. Endocrinol. 16 (2002) 100-115.
  • 132. Feron, O., Belhassen, L., Kobzik, L., Smith, T.W., Kelly, R.A. and Michel, T. Endothelial nitric oxide synthase targeting to caveolae. J. Biol. Chem. 271 (1996) 22810-22814.
  • 133. García-Cardeña, G., Fan, R., Stern, D.F., Liu, J. and Sessa, W.C. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J. Biol. Chem. 271 (1996) 27237-27240.
  • 134. García-Cardeña, G., Oh, P., Liu, J., Schnitzer, J.E. and Sessa, W.C. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc. Natl. Acad. Sci. USA 93 (1996) 6448-6453.
  • 135. García-Cardeña, G., Martasek, P., Sue Siler Masters, B., Skidd, P.M., Couet, J., Li, S., Lisanti, M.P. and Sessa, W.C. Disserting the interaction between nitric oxide synthase (NOS) and caveolin. J. Biol. Chem. 272 (1997) 25437-25440.
  • 136. Ju, H., Zou, R., Venema, V.J. and Venema R.C. Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J. Biol. Chem. 272 (1997) 18522-18525.
  • 137. Michel, J.B., Feron, O., Sacks, D. and Michel, T. Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J. Biol. Chem. 272 (1997) 15583-15586.
  • 138. Michel, J.B., Feron, O., Sase, K., Prabhakar, P. and Michel, T. Caveolin versus calmodulin. J. Biol. Chem. 272 (1997) 25907-25912.
  • 139. Venema, V.J., Ju, H., Zou, R. and Venema, R.C. Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. J. Biol. Chem. 272 (1997) 28187-28190.
  • 140. Feron, O., Dessy, C., Opel, D.J., Arstall, M.A., Kelly, R.A. and Michel, T. Modulation of the endothelial nitric-oxide synthase-caveolin interaction in cardiac myocytes. J. Biol. Chem. 273 (1998) 30249-30254.
  • 141. Feron, O., Saldana, F., Michel, J.B. and Michel, T. The endothelial nitric-oxide synthase-caveolin regulatory cycle. J. Biol. Chem. 273 (1998) 3125-3128.
  • 142. Feron, O., Dessy, C., Moniotte, S., Desager, J.-P. and Balligand, J.-L. Hyper-cholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J. Clin. Invest. 103 (1999) 897-905.
  • 143. Segal, S.S., Brett, S.E. and Sessa, W.C. Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. Am. J. Physiol. 277 (1999) H1167-H1177.
  • 144. Daniel E.E., Jury, J. and Wang, Y.F. nNOS in canine lower esophageal sphincter: colocalized with Cav-1 and Ca2+-handling proteins? Am. J. Physiol. Gastrointest. Liver Physiol. 281 (2001) G1101-G1114.
  • 145. Sowa, G., Pypaert, M. and Sessa, W.C. Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc. Natl. Acad. Sci. USA 98 (2001) 14072-14077.
  • 146. Mineo, C., Gill, G.N. and Anderson, R.G.W. Regulated migration of epidermal growth factor receptor from caveolae. J. Biol. Chem. 274 (1999) 30636-30643.
  • 147. Razani, B. and Lisanti, M.P. Two distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A. Am. J. Physiol. Cell Physiol. 281 (2001) C1241-C1250.
  • 148. Galbiati, F., Volonté, D., Engelman, J.A., Watanabe, G., Burk, R., Pestell, R.G. and Lisanti, M.P. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J. 17 (1998) 6633-6648.
  • 149. Engelman, J.A., Zhang, X.L., Razani, B., Pestell, R.G. and Lisanti, M.P. p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. J. Biol. Chem. 274 (1999) 32333-32341.
  • 150. Park, H., Go, Y.-M., Darji, R., Choi, J.-W., Lisanti, M.P., Maland, M.C. and Jo, H. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase. Am. J. Physiol. Heart Circ. Physiol. 278 (2000) H1285-H1293.
  • 151. Cohen, A.W., Park, D.S., Woodman, S.E., Williams, T.M., Chandra, M., Shirani, J., Pereira de Souza, A., Kitsis, R.N., Russell, R.G., Weiss, L.M., Tang, B., Jelicks, L.A., Factor, S.M., Shtutin, V., Tanowitz, H.B. and Lisanti, M.P. Caveolin-1 null mice develop cardiac hyperthropy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am. J. Physiol. Cell Physiol. 284 (2003) C457-C474.
  • 152. Czarny, M., Lavie, Y., Fiucci, G. and Liscovitch, M. Localization of phospholipase D in detergent-insoluble caveolin-rich membrane domains. J. Biol. Chem. 274 (1999) 2717-2724.
  • 153. Liou, J.-Y., Deng, W.-G., Gilroy, D.W., Shyue, S.-K. and Wu, K.K. Colocalization and interaction of cyclooxygenase-2 with caveolin-1 in human fibroblasts. J. Biol. Chem. 276 (2001) 34975-34982.
  • 154. Yamamoto, M., Toya, Y., Schwencke, C., Lisanti, M.P., Myers, M.G., Jr. and Ishikawa, Y. Caveolin is an activator of insulin receptor signaling. J. Biol. Chem. 273 (1998) 26962-26968.
  • 155. Mastick, C.C. and Saltiel, A.R. Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J. Biol. Chem. 272 (1997) 20706-20714.
  • 156. Kimura, A., Mora, S., Shigematsu, S., Pessin, J.E. and Saltiel, A.R. The insulin receptor catalyzes the tyrosine phosphorylation of caveolin-1. J. Biol. Chem. 277 (2002) 30153-30158.
  • 157. Nystrom, F.H., Chen, H., Cong, L.-N., Li, Y. and Quon, M.J. Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Mol. Endicrinol. 13 (1999) 2013-2024.
  • 158. Kim, Y.-N., Wiepz, G.J., Guadarrama, A.G. and Bertics, P.J. Epidermal growth factor-stimulated tyrosine phosphorylation of caveolin-1. J. Biol. Chem. 275 (2000) 7481-7491.
  • 159. Volonté, D., Galbiati, F., Pestell, R.G. and Lisanti, M.P. Cellular stress induces by tyrosine phosphorylation of caveolin-1 (Tyr14) via activation of p38 mitogen- activated protein kinase and c-Src kinase. J. Biol. Chem. 276 (2001) 8094-8103.
  • 160. Wang X.-Q., Sun, P. and Palier, A.S. Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor. J. Biol. Chem. 277 (2002) 47028-47034.
  • 161. Ushio-Fukai, M., Hilenski, L., Santanam, N., Becker, P.L., Ma, Y., Griendling, K.K. and Alexander, R.W. Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 276 (2001) 48269-48275.
  • 162. Hua, H., Munk, S. and Whiteside, C.I. Endothelin-1 activates mesangial cell ERK1/2 via EGF-receptor transactivation and caveolin-1 interaction. Am. J. Physiol. Renal Physiol. 284 (2003) F303-F312.
  • 163. Caselli, A., Taddei, M.L., Manao, G., Camici, G. and Ramponi, G. Tyrosine-phsophorylated caveolin is a physiological substrate of the low Mr protein-tyrosine phosphatase. J. Biol. Chem. 276 (2001) 18849-18854.
  • 164. Furuchi, T. and Anderson, R.G.W. Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). J. Biol. Chem. 273 (1998) 21099-21104.
  • 165. Labrecque, L., Royal, I., Surprenant, D.S., Patterson, C., Gingras, D. and Béliveau, R. Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol. Biol. Cell 14 (2003) 334-347.
  • 166. Huang, C., Hepler, J.R., Chen, L.T., Gilman, A.G., Anderson, R.G.W. and Mumby, S.M. Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol. Biol. Cell 8 (1997) 2365-2378.
  • 167. Cao, H., Courchesne, W.E. and Mastick, C.C. A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14. J. Biol. Chem. 277 (2002) 8771-8774.
  • 168. Zhu, W. and Smart, E.J. Caveolae, estrogen and nitric oxide. Trends Endocrinol. Metab. 14 (2003) 114-117.
  • 169. Wei, Y., Liu, Q., Yang, X., Wilkins, J.A. and Chapman, H.A. A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J. Cell Biol. 144 (1999) 1285-1294.
  • 170. Carman, C.V., Lisanti, M.P. and Benovic, J.L. Regulation of G protein-coupled receptor kinases by caveolin. J. Biol. Chem. 274 (1999) 8858-8864.
  • 171. Karpen, H.E., Bukowski, J.T., Hughes, T., Gratton, J.-D., Sessa, W.C. and Gailani, M.R. The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. J. Biol. Chem. 276 (2001) 19503-19511.
  • 172. Veldman, R.J., Maestre, N., Aduib, O.M., Medin, J.A., Salvayre, R. and Levade, T. A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: potential implications in tumour necrosis factor signalling. Biochem. J. 355 (2001) 859-868.
  • 173. Kobayashi, N., Mori, Y., Nakano, S., Tsubokou, Y., Kobayashi, T., Shirataki, H. and Matsuoka, H. TCV-116 stimulates eNOS and caveolin-1 expression and improves coronary microvascular remodeling in normotensive and angiotensin II-induced hypertensive rats. Atherosclerosis 158 (2001) 359-368.
  • 174. Yamamoto, M., Toya, Y., Jensen, R.A. and Ishikawa, Y. Caveolin is an inhibitor of platelet-derived growth factor receptor signaling. Exp. Cell Res. 247 (1999) 380-388.
  • 175. Tamai, O., Oka, N., Kikuchi, T., Koda, Y., Soejima, M., Wada, Y., Fujisawa, M., Tamaki, K., Kawachi, H., Shimizu, F., Kimura, H., Imaizumi, T. and Okuda, S. Caveolae in mesengial cells and caveolin expression in mesangial proliferative glomerulonephritis. Kidney Int. 59 (2001) 471-480.
  • 176. Zundel, W., Swiersz, L.M. and Giaccia, A. Caveolin 1-mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide. Mol. Cell. Biol. 20 (2000) 1507-1514.
  • 177. Oka, N., Yamamoto, M., Schwencke, C., Kawabe, J., Ebina, T., Ohno, S., Couet, J., Lisanti, M.P. and Ishikawa, Y. Caveolin interaction with protein kinase C. J. Biol. Chem. 272 (1997) 33416-33421.
  • 178. Wu, D., Foreman, T.L., Gregory, C.W., McJilton, M.A., Wescott, G.G., Ford, O.H., Alvey, R.F., Mohler, J.L. and Terrian, D.M. Protein kinase Cε has the potential to advance the recurrence of human prostate cancer. Cancer Res. 1162 (2002) 2423-2429.
  • 179. Kim, Y., Han, J.M., Han, B.R., Lee, K.-A., Kim, J.H., Lee, B.D., Jang, I.-H., Suh, P.-G. and Ryu S.H. Phospholipase D1 is phosphorylated and activated by protein kinase C in caveolin-enriched microdomain within the plasma membrane. J. Biol. Chem. 275 (2000) 13621-13627.
  • 180. Massimino, M.L., Griffoni, C., Spisni, E., Toni, M. and Tomasi, V. Involvement of caveolae and caveolae-like domains in signalling cell survival and angiogenesis. Cell. Signal. 14 (2002) 93-98.
  • 181. Lockwich, T.P., Liu, X., Singh, B.B., Jadlowiec, J., Weiland, S. and Ambudkar, I.S. Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J. Biol. Chem. 275 (2000) 11934-11942.
  • 182. Feng, X., Gaeta, M.L., Madge, L.A., Yang, J.-H., Bradley, J.R. and Pober, J.S. Caveolin-1 associates with TRAF2 to form a complex that is recruited to tumor necrosis factor receptors. J. Biol. Chem. 276 (2001) 8341-8349.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1a53103a-21c6-46d8-b279-a3e8159e98f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.