PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 3 |

Tytuł artykułu

Localization of acid phosphatase activity in the apoplast of pea [Pisum sativum L.] root nodules grown under phosphorus deficiency

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
ACPase activity was localized in the apoplast of pea root nodules under phosphorus deficiency. Pea plants (Pisum sativum L. cv. Sześciotygodniowy) where inoculated with Rhizobium leguminosarum bv. viciae 248 and were cultured on nitrogen-free medium with phosphate (-N/+P) or phosphate-deficient (-N/-P) one. In comparison with control nodules, P-deficient nodules showed the increase of ACPase activity in plant cell walls and the infection threads. The increase in bacterial ACPase activtty under P-deficiency may reflect higher det mand for inorganic phosphorus that is necessary for bacteria multiplication within the infection threads. The increase of ACPase activity in nodule apoplast under P stress may enlarge the availability of phosphate for plant and bacteria.

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.263-271,fig.,ref.

Twórcy

autor
  • Warsaw Agricultural University, Nowoursynowska 159, 02-776 Warsaw, Poland
autor

Bibliografia

  • Al-Niemi T.S, Kahn M.L, McDermott T.R. 1997. P metabolism in the bean-Rhizobium tropici symbiosis. Plant Physiol. 113: 1233-1242.
  • Aoyama H., Cavagis D.M., Taga E.M., Ferreira C.V. 2001. Endogenous lectin as possible regulator of the hydrolysis of physiological substrates by soybean seed acid phosphatase. Phytochem. 58: 221-225.
  • Ascencio J. 1997. Root secreted acid phosphatase kinetics as a physiological marker for phosphorus deficiency. J. Plant Nutr. 20: 9-26
  • Bariola P.A., Macintosh G.C., Green P.J. 1999. Regulation of S-like ribonuclease levels inArabidopsis: antisense inhibition of RNS1 or RNS2 elevates anthocyanin accumulation. Plant Physiol. 119: 331-342.
  • Bassarab C.A., Werner D. 1989. Mg2 - dependent pyrophosphatase, a tonoplast enzyme in the peribacteroid membrane of Glycine max root nodule. Symbiosis 7: 81-94.
  • Bozzo G.G., Raghothama K.G., Plaxton W.C. 2002. Purification and characterization of two secreted purple acid phosphatase isozymes from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. Eur. J. Biochem. 269: 6278-686.
  • Cashikar A.G., Kumeraesan R., Rao N.M. 1997. Biochemical characterization and subcellular localization of the red kidney bean purple acid phosphatase. Plant Physiol. 114: 907-915.
  • Ciereszko I., Barbachowska A. 2000. Sucrose metabolism in leaves and roots of bean (Phaseolus vulgaris) during phosphate deficiency. J. Plant Physiol. 156: 640-644.
  • Duff S.M.G, Plaxton W.C., Lefebvre D.D. 1991. Phosphate-starvat ion response in plant cells: de novo synthesis and degradation of acid phosphatase. Proc. Natl. Acad. Sci. USA. 88: 9538-9542.
  • Duff S.M.G., Sarath G., Plaxton W.C. 1994. The role of acid phosphatases in plant phosphorous metabolism. Physiol Plant. 90: 791-800.
  • Fahraeus G. 1957. The infection of clover root hairs by nodule bacteria studied by single glass slide technique. J. Gen. Microbiol. 16: 374-381.
  • Ferte F., Moustacas A.-M., Nari J., Teissere M., Borel M., Thiebart J., Noat G. 1993. Characterization and kinetic properties of a soya-bean cell-wall phosphatase. Eur J Biochem. 211: 297-304.
  • Gomori G. 1950. An improved histochemical technique for acid phosphatase. Stain Tech. 25: 81-85.
  • Goldstein A.H., Baertlein D.A., McDaniel R.G. 1988. Phosphate starvation inducible metabolism in Lycopersicon esculentum. I. Excretion of acid phosphatase by tomato plants and suspension-cultured cells. Plant Physiol. 87: 711-715.
  • Haran S., Logendra S., Seskar M., Bratanova M., Raskin I. 2000. Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiol. 124: 615-626.
  • Israel D.W. 1987. Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol. 84: 835-840.
  • Li M., Tadano T. 1996. Comparison of characteristic of acid phosphatases secreted from roots of lupine and tomato. Soil Sci. Plant Nutr. 42: 753-763.
  • Miller S.S., Liu J., Allan D.L., Menzhuber C.J., Fedorova M., Vance C.P. 2001. Molecular control of acid phosphatase sectretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol 127: 594-606
  • Penheiter A.R., Duff S.M.G., Sarath G. 1997. Soybean root nodules acid phosphatase. Plant Physiol. 114: 597-604.
  • Raghothama K.G. 2000. Phosphate transport and signaling. Curr. Opin. PlantBiol. 3: 182-187.
  • Record R.D., Griffing L.R. 1988. Convergence of the endocytic and lysosomal pathways in soybean protoplasts. Planta 176: 425-32.
  • Sa T.M. Israel D.W. 1991. Energy status and functioning of phosphocus defficient soybean nodules. Plant Physiol. 97: 928-935.
  • Sano A., Kaida R., Maki H., Kaneko T.S. 2003. Involvement of an acid phosphatase on cell wall regeneration of tabacco protoplasts. Physiol Plant. 119: 121-125.
  • Smart J.B., Dilworth M.J., Robson A.D. 1984. Effect of phosphorus supply on phosphate uptake and alkaline phosphatase activity in rhizobia. Arch. Microbiol. 140: 281-286.
  • Tadano T., Komatsu K. 1993. Utilization of organic phosphorus in the soil by plant roots. 15th World Congress of Soil Sci. 9: 521-522.
  • Tarafdar J.C., Jungk A. 1987. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol. Fert. Soils 3: 199-204.
  • Torriani A. 1990. From cell membrane to nucleotides: the phosphate regulon in Escherichia coli. BioEssays 12: 371-376.
  • Trull M.C., Deikman J. 1998. An Arabidopsis mutant missing one acid phosphatase isoform. Planta 206: 544-550.
  • Vance C.P. 2000. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world declining renewable resources. Plant Physiol. 127: 390-397.
  • Wanner BL. 1993. Gene regulation by phosphate in enteric bacteria. J. Cell. Biochem. 51: 47-54.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-163f73f1-16ed-404d-8616-0d4e027651fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.