PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

1999 | 21 |

Tytuł artykułu

Zastosowanie termografii do badania stresu wodnego roslin i ewapotranspiracji rzeczywistej

Treść / Zawartość

Warianty tytułu

EN
The application of thermography in the investigations of plant water stress and actual evapotranspiration

Języki publikacji

PL

Abstrakty

EN
The monograph concerns the method of radiation temperature measurements of natural meadow plants and application of these measurements for evaluation of water stress and evapotranspiration.The aim of this study was: 1. to investigate the influence of the water energy state (soil water content and soil water potential) on radiation temperature of plant cover in laboratory and lysimetric experiments 1. the comparison and verification of the models of actual and potential evapotranspiration calculation with the use of plant cover radiation temperature measurement; the realisation of this aim was performed in two stages, i.e. by evaluation and preliminary selection of the methods of évapotranspiration calculation basing on literature studies and by verification of some chosen methods in ly- simetric investigation of meadow plant cover; 2. the determination of plant water energetic status using the Crop Water Stres Index (CWSI) and its correlation with soil water potential in the soil and plants. In the monograph the role of water for plants development was described and the physical principles of mass, momentum and energy transport in the boundary layer of atmosphere were presented. The principle of infrared radiation registration with the use of thermographic systems was described as well as the factors influencing the measurement of canopy temperature. The review and analysis of the methods of actual and potential évapotranspiration evaluation were performed for selecting the method which was the subject of later verification. The investigation were performed on two maximally differentiated soils with natural meadow plant cover. The radiation temperature measurements were performed with the use of AGA 680 thermovision system (3-3,5μm) and the AGEMA 880 system (8-13μm). The radiation temperature difference between the investigated plant cover and the one in comfortable water condition is a good indicator of water stress of plants, which is determined by soil water potential, as a decisive physical factor of its accessibility for plants. The temperature difference regarding to water comfort conditions increases to 2°C when the value of soil water potential exceeds pF 3,7, which corresponds to the range of unavailable water for plants, having the maximal values of 7°C with pF 4,2, which corresponds to the plant wilting point. The actual évapotranspiration evaluation method was chosen, basing on the heat balance equation, in which radiation temperature of canopy surface is used for the determination of sensible heat flux. Two modifications of this method differing with the way of the aerodynamic resistance determination were the subject of verification. Basing on the lysimetric studies, the components of heat balance equation were analysed as well as the impact of the state of thermodynamic equilibrium in the atmosphere on the accuracy of sensible heat estimation and the utilisation of actual and potential évapotranspiration for crop water stress evaluation using of Crop Water Stress Index (CWSI).

Wydawca

-

Czasopismo

Rocznik

Tom

21

Opis fizyczny

s.1-130,wykr.,rys.,tab.,fot.,bibliogr.

Twórcy

Bibliografia

  • 1. Adamczyk B., Aramowicz B., Gołaszewska K., Olech T.: Modelowanie procesów dyfuzyjnych w ośrodkach porowatych. Roczniki Nauk Rolniczych, 73-C-4, 175-185, 1978.
  • 2. AGEMA Infrared System s-materiały szkoleniowe.
  • 3. Allen R.G., Jensen M.E., Wright J.L., Burman R.D.: Operational estimates of reference évapotranspiration. Agronomy Journal, 81:650-662, 1989.
  • 4. Allen R.C., Pruitt W.O.: FAO-24 Reference évapotranspiration factors. Journal of Irrigation and Drainage Engineering, Vol, 117, No, 5, 1991.
  • 5. Aston A.R., van Bavel C.H.M,: Soil surface water depletion and leaf temperature. Agron. J., 64:368-373, 1972.
  • 6. Axelsson S,, Luoden B.: Experimental resuits in soil moisture mapping using IR thermography, ITC J., 1:43-49, 1986.
  • 7. Baranowski P., Mazurek W., Walczak R.T.: Uzyskiwanie, analiza i interpretacja obrazów termalnych. Materiały VI Letniej Szkoły "Fizyka z elementami agrofizyki", Lublin 26- 27 września 1994, str.127-141.
  • 8. Baranowski P., Mazurek W., Walczak R.T.: Weryfikacja modeli wyliczania ewapotranspiracji w badaniach lizymetrycznych z zastosowaniem pomiaru temperatury radiacyjnej. Materiały III Ogólnopolskiej Konferencji Termografii i Termometrii w Podczerwieni, Warszawa 27-29 listopada 1996, str. 219-224.
  • 9. Baranowski P., Mazurek W., Walczak R.T.: Ocena warunków termicznych w uprawie pod osłonami z wykorzystaniem termowizji, Zesz. Probl. Post. Nauk Roln., 429, 1996, str. 37-41.
  • 10. Baranowski P., Walczak R.T., Witkowska-Walczak B.: Rola parametrów struktury gleby w modelach plonowania roślin. Materiały VIII Szkoły "Fizyka z elementami agrofizyki", Lublin 19-20 września 1996, str.17-38.
  • 11. Baranowski P., Walczak R.T., Witkowska-Walczak B.: Submodele fizycznych procesów systemu gteba-roślina-atmosfera w modelach plonowania roślin. Materiały VIII Szkoły "Fizyka z elementami agrofizyki", Lublin 19-20 września ¡996, str.39-50.
  • 12. Bartholic J.F., Namken L.N., Wicgand C.L.: Aerial thermal scanner to determine temperatures of soils and of crop canapies differing in water stress. Agron. J. 64:603-608, 1972.
  • 13. Batchelor C.H.: The accuracy of évapotranspiration estimates with the FAO modified Penman equation. Irrig. Sci. 5, 223-233, 1984.
  • 14. Ben-Asher J,, Phene C.J., Kinarti A.: Canopy temperature to assess daily evapotranspiration and management of high frequency drop irrigation systems. Agricultural Water Management, 22,379-390, 1992.
  • 15. Bowen LS.: The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 27, 779-787, 1926.
  • 16.Brown K.W.: Calculation of ewapotranspiration from crop surface temperature. Agric. Meteorol. 14:199-209, 1974.
  • 17.Brutseart W.: Evaporation into the atmosphere. Kulwe r Academic Publishers. 1982,
  • 18.Busingcr J.A., Wyngaard J.C, Izumi V., Bradley E.F.: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28, 181-189, 1971.
  • 19.Busingcr J.A.: Some remarks on Penman's equation for the evapotranspiration. Neth. J. Agri. Sci. 4:77-80, 1956.
  • 20.Caselles V,, Del eg id o J,: A simple model to estimate the daily value of the regional maximum évapotranspiration from satellite temperature and albedo images. Int. J. Remote Sensing, Vol. 8, No. 8, 1151-1162, 1987.
  • 21.Choudchury B.J., Idso S.B.: An empirical model for stomatal resistance of wheat. Agri. For. Meteorol. 30, 56-59,1985.
  • 22.Choudchury B.J.: Simulating the effects of weather variables and soil water potential on a corn canopy temperature. Agric. Meteorol, 29:169-182, 1983.
  • 23.Choudhury B.J., Idso S.B.: Simulating sunflower canopy temperatures to infer root-zone soil water potential. Agric. and Forest Meteorol., 31:69-78, 1984.
  • 24.Clawson K.L. and Blad B.L.: Infrared thermometry for scheduling irrigation of corn. Agron. J. 74:311-316, 1982.
  • 25.Clawson K.L., Jackson R.D., Pinter P.J,: Evaluating plant water stress with canopy temperature differences. Agron. J., 81: 858-863, 1989.
  • 26.Davies J.A., Allen C.D.: Equilibrium, potential and actual evaporation from cropped surfaces in southern Ontario. J. Appl. Meteorol. 12, 649-657, 1973.
  • 27.Dąbrowska-Zielińska K.: Określenie ewapotranspiracji i wilgotności gleb w strefie korzeniowej roślin metodami teledetekcyjnymi. Prace Inst. Geod. i Kartogr, 36, 1-2, 1989.
  • 28.Dąbrowska-Zielińska K.: Szacowanie ewapotranspiracji, wilgotności gleb i masy zielonej łąk na podstawie zdjęć satelitarnych NOAA. Prace Geograficzne IGiPZPAN nr 165, 1995.
  • 29.Dąbrowska-Zielińska K.: Wykorzystanie zdjęć satelitarnych NOAA do oszacowania ewapotranspiracji i wilgotności gleb. Przeg. Geofiz. 36, 309-320, 1991.
  • 30.Doorenbos JL, Pruitt W.O.: Guidelines for predicting crop water requirements. Irrigation and Drainage Paper 24, Food and Agriculture Organization of the United Nations, Rome, 179 p. 1975,
  • 31.Doorenbos J., Pruitt W.O.: Guidelines for predicting crop water requirements. Irrigation and Drainage Paper 24, Food and Agriculture Organization of the United Nations, Rome, 156 p. 1977,
  • 32.Duchesne J.: Detection par radiothermometrie d'une attaque de pietin-verse sur cereale. EN- SA de Rennes. Chaire de Génie Rural, Hydraulique et Climatologie Agricoles. Rapport 1987.
  • 33.Ehrler W.L.: Cotton leaf temperatures as related to soil water depletion and meteorological factors. Agron, J. 65:404-409, 1973.
  • 34.Frevert D.K, Hill R.W., Braaten B.C.: Estimation of FAO évapotranspiration coefficients. Journal of Irrigation and Drainage Engineering, Vol. 109, No. 2, 1983.
  • 35.Fusch M. and Tanner C.B.; Infrared thermometry of vegetation. Agron. J., 5:597-601, 1966.
  • 36.Fusch M.: Infrared measurement of canopy temperature and detection oTpiant water stress. Thcor. Appl. Climatol. 42:253-261, 1990.
  • 37.Gates D.M., T antra porn W,: The reflectivity of deciduous trees and herbaceous plants in the infrared to 25 microns. Science, 115:613-616, 1952.
  • 38.Gliński J., Lipiec J.: Soil physical conditions and plant roots. CRC Press, Boca Raton, FL, 1990.
  • 39.Gliński J., Stępniewski W.: Soil aeration and its role for plants. CRC Press Inc., Boca Raton, FL, 1985,
  • 40.Halim R.A., Buxton D.R., H attend orf M, J. and Carlson R.E.: Crop water stress index and forage quality relationships in alfalfa, Agron. J. 82:906-909, 1990.
  • 41.Halim R.A., Buxton D.R., Hattcndorf M.J., Carlson R.E.: Water-deficit effects on alfalfa at various growth stages. Agron. J., 81:765-770, 1989.
  • 42.Hanks R.J., Ashcroft G.L.: Applied Soil Physics. Springer-Verlag Berlin Heidelberg, 1980.
  • 43.Hargreaves G.L., Hargreaves G.H., Rilley J.P.: Agricultural henefits for Senegal River Basin, Journal of Irrigation and Drainage Engr., ASCE, 111:113-124, 1985.
  • 44.Hatfield J.L.: Canopy temperatures: The usefulness and reliability of remote measurements. Agron. J., 67, 889-897, 1979,
  • 45.Hatfield J.L.; Wheat canopy resistance determined by energy balance techniques. Agron. J,, 77:279-283, 1985.
  • 46.Hattendorf M.J., Evans D.W., Pcaden R.N.: Canopy temperature and stomatal conductance of water-stressed dormant and nondormant alfalfa types. Agron. J., 82:873-877, 1990.
  • 47.Heilman J.L., Kanemasu E.T., Rosenberg N.J., Blad B.L.: Thermal scaner measurement of canopy temperature to estimate évapotranspiration. Remote Sens, of Environm. 5:137-145, 1976.
  • 48.Heilman J.L., Hcilman W.E., Moore D.G.: Remote sensing of canopy temperalure at incomplete cover. Agron.J., 73, 403-406, 1981,
  • 49.Idso S.B., Jackson R.D., Pinter P..J, Jr., Rcginato R.J., Hatfield J.L.: Normalizing the stress-degree-day parameter for environmental variability, Agric. Meteorol. 24:45-55, 1981.
  • 50.Jackson R.D., Reginato R.J., Idso S.B.: Wheat canopy temperature: a practical tool for evaluating water requirements. Water Re sour. Res, 13,651-657, 1977.
  • 51.Jackson R.D., Idso S.B., Reginato R.J., Pinter P.J.: Canopy temperature as a crop water stress indicator. Waler Resour. Res., Vol.17, No.4,1133-1138, 1981.
  • 52.Jackson R.D.: Canopy temperature and crop water stress. Adv. Irrig. 1,43-85, 1982.
  • 53.Jackson R.D,: Estimating areal evapotranspiration by combining remote and ground-based data. Remote Sensing Applications for Consumptive Use (Evapotranspiration). AWRA Monograph Series No, 6, 13-25, 1986.
  • 54.Jackson R.D., Pinter P.J, Reginato R.J.: Net radiation calculated from remote multispectral and ground station meteorological data. Agriculture and Forest Meteorology, 35, 153-164, 1985.
  • 55.Jackson R.D., Moran M.S., Gay L.W., Raymond L.E.: Evaluating evaporation from field crops using airborne radiometry and ground based meteorological data. Irrigation Sci. 8, 324- 332, 1987.
  • 56.Jalali-Farahani H.R., Slack D.C., Kopec D.M, and Matthias A.D.: Crop water stress index models for bermudagrass turf: a compparison. Agron. J. 85:1210-1217, 1993.
  • 57.Kędziora A., Ciesielski R.: Przydatność uproszczonej metody Penmana do określania ewa- potranspi racji potencjalnej w zastosowaniu do sterowania nawodnieniami. Rocz. AR Pozn. 149,20-31, 1984,
  • 58.Kędziora A., Olejnik J., Kapuściński J.: Impact of landscape structure on heat and water balance. Ecology Int. Bull., USA, 17, 1-17, 1989.
  • 59.Kędziora A., Kapuściński J,, Moczko J., Olejnik J., Karl iii ski M,: Struktura bilansu cieplnego pola lucerny. Rocz. AR Pozn, 201, Melioracje 8, Mat. Sesji „Mikroklimat i parowanie terenowe",31-39, 1989.
  • 60.Kędziora A.: Micrometeorological and remote sensing methods used in environmental investigation. Zesz. Probl. Post. Nauk Roln., 405:101-114, 1994.
  • 61.Kędziora A,: Podstawy agrometeorologii. Państwowe Wydawnictwo Rolnicze i Leśne - Poznań 1995.
  • 62.Kimes D.S.: Remote sensing of row crop structure and component temperature using directional radiometric temperatures and inversion techniques. Remote Sensing of Environment, 13,33-55, 1983.
  • 63 Kustas W.P.: Choudhury B.J., Inoue Y„ Pinter P.J., Moran M.S., Jackson R.D., Regina- to R.J.: Ground and aircraft infrared observations over a partially-vegetated area. Int. J. Remote Sensing, Vol. 11, No. 3, 409-427, 1990.
  • 64. Lipiec J.: Stan fizyczny gleby i jego wpływ na wzrost i funkcjonowanie korzeni roślin. Wybrane metody badań. X Szkota „Fizyka z elementami Agrofizyki" nt."Fizyczne właściwości gleby a rozwój roślin - metody badawcze", Lublin, 22-23 września 1998.
  • 65. Luchiari A,, Jr. and Riha S.J.: Bulk surface resistance and its effect on évapotranspiration rates in irrigated wheat. Agron, J. 83, 888-895, 1991.
  • 66. Łabędzki L.: Evaluating crop water stress using infrared thermometry. Zesz. Probl, Post Nauk Roln.. 419, 69-73, 1995.
  • 67.Łabędzki L.: Potrzeby nawadniania użytków zielonych - uwarunkowania przyrodnicze i prognozowanie. Wydawnictwo !MUZ, Falenty, 1997.
  • 68.Łukomska L, Ru do w ski G,: Wpływ różnych warunków na temperaturę roślin. Biuletyn WAT.
  • 69.Malicki M.A, Mazurek W.: Thermoelectric al thermometer for remote recording of the temperature in the soil profile. Zesz. Prob. Post. Nauk Roln., 281:139-145, 1982.
  • 70.Malicki M.A.: Refleclometric (TDR) meter of moisture content in soils and other capillary- porous materials. Zesz. Prob. Post. Nauk Roi., 388:107-114, 1987.
  • 71.Mateos L., Smith R.C.G., Sides R.: The effect of soil surface temperature on the crop water stress index. Irrig. Sci., 12:37-43, 1991.
  • 72.Mazurek W, Walczak R.T., Sobczuk H.A., Baranowski P.: The model investigation of soil water content and soil water potential impact on radiation temperature of meadow plant cover. Zesz. Probl. Post. Nauk Roi. z.436:93-100, 1996.
  • 73.Mazurek W., Baranowski P., Walczak R.T., Sobczuk H.: Zastosowanie pomiaru temperatury radiacyjnej do oceny stresu wodnego roślinności łąkowej. Doświadczenie wazonowe. Materiały III Ogólnopolskiej Konferencji Termografii i Termometrii w Podczerwieni, Warszawa 27-29 listopada 1996, str. 225-229.
  • 74.Mazurek W.: Temperatura radiacyjna jako wskaźnik stresu wodnego roślin. Praca doktorska wykonana w IA PAN, Lublin, 1998.
  • 75.Millard J.P., Jackson R.D., Goettelman R.C., Rcginato R.J.: Crop water-stress assement using an airborne thermal scanner. Photog. Eng. and Remote Sens. 44:77-85, 197K,
  • 76 Miller E.C., Saunders A.R.: Some observation on the temperature of the leaves of crop plants. J. Agric. Res. 26:15-43, 1923.
  • 77. Monteith J.L., Szcicz G., Waggoner P.E.: Measurement and control of stomatal resistance in the field. J. Appl. Ecol., 2:345-355, 1965.
  • 78. Monteith J.L., Szeicz G.: Radiative temperature in the heat balance of natural surfaces. Q. J. R. Meteorol. Soc„ 88:496-507, 1962.
  • 79. Monteith J.L.: Evaporation and surface temperature. Q. J. R. Meteorol. Soc., 107:1-27, 1981.
  • 80. Nakayama F.S., Bucks D.A.: Crop water stress index, soil water, and rubber yield relations for the Guayule plant. Agron. J. 76:791-794, 1983.
  • 81. Nielsen D.C., Clawson K.L., Blad B.L.: Effect of solar azimuth and infrared thermometer view direction on measured soybean canopy temperature. Agron, J,, 76, 607-610, 1984.
  • 82. Nieuwenhuis G.J.A., Smidt E.H., Thunnissen H.A.M.: Estimation of regional evapotranspiration of arable crops from thermal infrared images. Int. J. Remote Sensing, Vol. 6, No. 8, 1319-1334, 1985.
  • 83.Olejnik J,, Kędziora A,: A model for heat and water balance estimation and its application to land use and climate variation. Earth Surface Processes Landforms, 16:601-617, 1991.
  • 84.O'Toole J.C. and Hatfield J.L.: Effect of wind on the crop water stress index derived by infrared thermometry. Agron. J. 75:811-817, 1983.
  • 85.Olszta W,: Simulation of transpiration and leaf temperature for grassland with varying soil moisture condition. Wageningen (The Netherlands). The Winand Staring Centre. Interne me- dedeling nr. 6,, 1989.
  • 86.Pandey R.K., H errera W.A., Pendleton J.W.: Drought response or grain legumes under irrigation gradient: 11. Plant water status and canopy temperature. Agron. J., 76:553-557,1984
  • 87.Paulson C.A.: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appi. Meteorol., 9:857-861, 1970.
  • 88.Penman H.L.: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, A 193; 120-146, 1948.
  • 89.Penman H.L.: Evaporation: An introductory survey. Neth. J, Agr. Sci., 9:9-29, 1956.
  • 90.Penman H.L., Sehofield R.K.: Some physical aspects of assimilation and transpiration. Sympos. Soc.Exper. Biol., 5, 115-129, 1951.
  • 91.Penman H.L.: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, A 193: 120-146, 1948.
  • 92.Penman H.L.: Vegetation and hydrology. Tech. Comm. 53: p.124, Commonwealth Bur. of Soils, Harpenden, Herts., England, 1963.
  • 93.Piotrowski J., Rogalski A.: Detektory podczerwieni dla urządzeń zobrazowania termalnego. Materiały Sympozjum Naukowego „Technika przetwarzania obrazu", 22-23 września Warszawa, str. 215-225, 1988.
  • 94.Price J.C,: Estimation of regional scale évapotranspiration through analysis of satellite thermal-infrared data. IEEE Transactions of Geoscience and Remote Sensing of Environment, 18:75-89, 1982.
  • 95.Price J.C.: The contribution of thermal data in Landsat multispectral classification. Photog. Eng. and Remote Sens., 47:229-236, 1981.
  • 96.Price J.C.: The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Resoureces research, 16:787-795, 1980.
  • 97.Reginato R.J.: Field quantification of crop water stress. Trans ASAE 26:772-775/781, 1983.
  • 98.Reginato R.J., Jackson R.D., Pinter P.J.: Evapotranspiration calculation from remote multi- spectral and ground station meteorological data. Remote Sensing of Environment 18:75-89,1985
  • 99. Rudowski G,, Pietrzak E,; Opracowanie metody określania wpływu atmosfery na mierzoną temperaturę radiacyjną. Sprawozdanie IGiK, Warszawa 1986.
  • 100.Rudowski G.: Termowizja i jej zastosowanie. WKi£, Warszawa 1978.
  • 101.Ryszkowski L., Kędziora A,: Impact of agricultural landscape structure on energy flow and matter cycling. Landscape Ecology, l(2):85-94, 1987.
  • 102.Sala A.: Radiacyjna wymiana ciepła. WNT, Warszawa 1982,
  • 103.Sawicki J.: "Kierunki sukcesji zbiorowisk roślinnych w zależności od sposobu i intensywności gospodarowania w warunkach wieloletniego użytkowania kośnego i pastwiskowego" Sprawozdanie końcowe z projektu badawczego nr 5 S312 030 04, Katedra Łąkarstwa Wydział Rolniczy AR w Lublinie, 1996.
  • 104.Seguin B., Brunet Y., Perrier A,; Bstimation of evaporation: a review ofexisting methods and recent developments. E.G.S. Meeting Symposium on Evaporation, Leeds, August 1982.
  • 105.Seguin B., Itier B.: Using midday surface temperature to estimate daily evaporation from satellite thermal I.R. data. Int. J. of Remote Sensing, 4:371-384, 1983.
  • 106.Sharma M.L.i Estimating évapotranspiration. Advances in Irrigation. Academic Press, Inc., New York, p.213-281, 1985.
  • 107.Soczyńska U.: Podstawy hydrologii dynamicznej. Wyd. UW 1993.
  • 108.Soer G.J.R.: The TERGRA model - a mathematical model for the simulation of the daily behaviour of crop surface temperature and actual ewapotranspiration. NIWARS publ. 46, Delft, 1977
  • 109.Soer G.J.R..1 Estimation of Regional Evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures. Remote Sens. Environ., 9:27-45, 1980.
  • 110.Steinmetz S., Lagouarde J, Delccolle R., Guerif M., Seguin B.: Evapotranspiration and water stress using thermal infrared measurements, A general review and a case study on winter durum wheat in southern France. Materials of International Symposium on „Physiology / Breeding of winter cereals for mediterranean environments", Mountpellier, France, July 3-6, 1989.
  • 111.Stewart R.B., Rouse W.R.: A simple method for determining the evaporation from shallow lakes and ponds. Water Resour. Res. 12, 623-628, 1976.
  • 112. Stockle C.O. and Dugas W.A.: Evaluating canopy temperature-based indices for irrigation scheduling. Irrig. Sci., 13:31-37, 1992.
  • 113. Stoll A.M., Hardy J.D.: A method for measuring radiant temperatures of the environment. J. Appl.Physiol.5:117-124, 1952.
  • 114. Stone L.R., Horton M.L.: Estimating ewapotranspiration using canapy temperatures: Field evaluation, Agron. J. 66:450-454, 1974.
  • 115. Sugita M., Brutsaert W.: Daily evaporation over a region from lower boundary layer profiles measured with radiosondes. Water Resources Research, Vol, 27, No. 5, 747-752, 1991,
  • 116. Szeicz G., Long I.F.: Surface resistance of canopies. Water Resour, Res., 5:622-633, 1969.
  • 117. Tanner S.B.: Plant temperatures. Agron. J., 55:210-211, 1963.
  • 118.Thofelt L.: Studies on leaf temperature recorded by direct measurement and by thermography. Acta Universitatis Upsaliensis, Uppsala 1975.
  • 119.Thom A.S., Oliver H.R.; On Penman's equation for estimating regional evaporation. Quart. J. R. Met. Soc. 103, 345-357, 1977.
  • 120.Tubaileh A.S., Sammis T.W. and Lugg D.G.: Utilization of thermal infrared thermometry for detection of water stress in spring barley. Agric. Water Management., 12.75-85, 1986.
  • 121.Usowicz B.: Application of themocouples for the recording of air humidity and temperature profile and soil temperature. Zesz. Probl. Post. Nauk Roln., 346:133-140, 1987.
  • 122. Usowicz B,: Statistical-physical model of thermal conductivity in soil. Pol. J. Soil Sci., XXV//1, 27-34, 1992.
  • 123.Van Bavcl C.H.M., Ehrlcr W.L.: Water loss from sorghum field and stomatal control. Agron. J , 60:84-86, 1968.
  • 124.Van Bavcl C.H.M.: Potential evaporation: the combination concept and its experimental verification. Water Resources Research, Vol, 2, No. 3, 455-464, 1966.
  • 125.Van de Griend A.A,, Owe M, Groen M, and Stoli M.P,: Measurement and spatial variation of thermal infrared surface emissivity in a savanna environment. Water Resour. Res., 27:371- 379, 1991.
  • 126.Walczak R.T.: Modelowe badania zależności retencji wodnej od parametrów fazy stałej gleby. Problemy Agrofizyki 41, 1984.
  • 127.Walczak R.T, Mazurek W, Baranowski P.: Teledetekcja w badaniach agrofizycznych. Materiały III Letniej Szkoły "Fizyka z elementami agrofizyki", Lublin 23-25 września 1991, sir. 1-24.
  • 128.Walczak R.T., Baranowski P., Mazurek W,: The impact of meteorological conditions on radiation temperature (range 8-13 pm) of plant cover under different water conditions. 5th International Conference on Physical Properties of Agricultural Materials, Paper No. 93-1008, Bonn, 1993,
  • 129.Walczak R.T.: Struktura bilansu promieniowania i stosunki termiczno-wilgotnościowe gleby, Projekt badawczy nr PB 1679/5/91. Instytut Agrofizyki PAN, Lublin 1994.
  • 130. Walczak R.T.: Określenie zależności między wilgotnością gleby a temperaturą radiacyjną pokrywającej ją roślinności łąkowej na podstawie laboratoryjnych badań wazonowych. (Temat objęty planem koordynacyjnym CPBP nr 01,20 "Rozwój i wykorzystanie badań kosmicznych" podprogramu 4 "Teledetekcja", poz. 4,2,2.6) - I i II etap prac w latach 1987-1988, Instytut Agrofizyki PAN, Lublin,
  • 131.Walczak R.T., Sławiński C,, Sobczuk H.A., Gliński ,1.: Aspekt hydrologiczny w modelu EURO-ACCESS (Agroclimatic Change and European Soil Suitability). Acta Agrophysica 9, Lublin 1998.
  • 132.Walker G.K., Hatfield J.L.: Stress measurement using foliage temperatures. Agron. J., 75:623-629, 1983.
  • 133Wanjura D.F., Kelly C.A., Wendt C.W. and Hatfield J.L.: Canopy temperature and water stress ofcotton crops with complete and partial ground cover, Irrig, Sci., 5:37-46, 1984.
  • 134.Wiegand C.L., Namken L.N.: Influence of plant moisture stress, solar radiation, and air temperature on cotton leaf temperatures. Agron. J., 58, 582-586, 1966.
  • 135.Witkowska-Walczak B,: Evaporation from aggregates of a podzolic, a light brown and a chernozem soil. Int. Agrophysics, 9, 49-54, 1995.
  • 136.Wright G.G. and Morrice J.G.: Potato crop distribution and subdivision on soil type and potential water deficit. An integration of satellite imagery and environmental spatial database. Int. J. Remote Sens., 9:683-699, 1988.
  • 137.Wright J.L.: New évapotranspiration crop coefficients. Journal of Irrigation and Drainage Division, ASCE, 108: 57-74, 1982.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-160c3c45-1cc0-44f1-ba68-f92b42ed78cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.