PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 15 | 2 |

Tytuł artykułu

The impact of additional Pb input on the dynamics of Pb-enriched agricultural soils

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Agricultural ecosystems are differently sensitive to heavy metal inputs, which at present are directly related to human activities. Lead is of particular concern due to its ability to threaten soil quality and human health. The investigated soil samples were collected from different agricultural soils (under cereal croppings) moderately subjected to activity of the Głogów Copper Smelter (Poland). They consisted of an acidic soil (Dystri-Gleyic Fluvisols - S₁) and three near neutral to slightly alkaline soils (Haplic Luvisols - S₂, Gleyic Fluvisols - S₃ and Molli-Gleyic Fluvisols - S₄). These soils were tested in order to determine the impact of additional Pb inputs on its dynamics and mobility. Of all the soils studied, S₂, S₃ and S4 have exhibited higher acid buffer capacities than S₁. Lead sorption parameters, such as Langmuir adsorption maximum (amax) and parameters related to interaction energies (b) as well as the Freundlich partition parameter (KF), were used for comparing the reactivity and dynamics of added Pb into these soils. The data showed that S₂, S₃ and S₄ retained more Pb than did S₁, characterized by low specific surface area (SSA) and cation exchange capacity (CEC). Charge-based (SDCEC) and specific surface-based (SDSSA) sorption densities were also used for evaluating the direct impact of additional Pb inputs. These parameters revealed that S₂, S₃ and S₄ may support greater inputs of Pb with less threat to its mobility, in contrast to S₁. Therefore, any practices leading to additional Pb inputs into the latter soil may result in serious Pb mobility. The negative values of the Gibbs free energy changes (ΔGo) for Pb dynamics in the studied soils confirm that the ion exchange process proceeded naturally and spontaneously with a markedly high affinity for Pb ions developed by S₂, S₃ and S₄, and low affinity by S₁.

Wydawca

-

Rocznik

Tom

15

Numer

2

Opis fizyczny

p.219-227,fig.,ref.

Twórcy

autor
  • Agricultural University, Wojska Polskiego 71 F, 60-625 Poznan, Poland

Bibliografia

  • 1. COLBOURN P., THORNTON I. Lead pollution of agricultural soils. Jour. Soil Sci., 29, 513, 1978.
  • 2. GARCIA-MIRAGAYA J. Levels, chemical fractionation and solubility of lead in roadside soils of Caracas, Venezuela. Soil Sci., 138, 147, 1984.
  • 3. JOPONY M., YOUNG S.D. The solid-solution equilibria of lead and cadmium in polluted soils. Eur. Jour. Soil Sci., 45, 59, 1994.
  • 4. TILLS A.R., ALLOWAY B.J. The speciation of lead in soil solution of very polluted soils. Environ. Technol. Letters, 4, 529, 1983.
  • 5. NRIAGU J.O.. Paleoenvironmental research – Tales told in lead. Science, 281, 1622, 1998.
  • 6. USEPA. Common chemicals found at Superfund sites. EPA 540/R-90/044 U.S. Gov. Print Office, Washington, DC, 1992.
  • 7. ADRIANO D. C. Trace Elements in the Environment. Springer Verlag, New York., p. 553, 1986.
  • 8. KABATA-PENDIAS A., PENDIAS H. . Trace Elements in Soils and Plants, (2nd Edition). CRC Press, p. 365, 1992.
  • 9. MA L.Q., RAO N.G. Effects of phosphate rocks on sequential chemical extraction of lead in contaminated soils. Jour. Environ. Qual., 26, 788, 1997.
  • 10. BORUVKA L.S., KRISTOUFKOVA L., KOZAK J., HUAN WEI C. Speciation of cadmium, lead and zinc in heavily polluted soils. Rostliny Vyroby, 43, 187, 1997.
  • 11. KABALA C., SINGH B.R. Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter. Jour. Environ. Qual., 30, 485, 2001.
  • 12. DAVRANCHE M., BEAUFRETON S., BOLLINGER J.C. Influence of carbonates on the surface charge of a natural solid. Jour. Coll. Interf. Sci. 249, 113, 2003.
  • 13. McBRIDE M.B. Reaction controlling heavy metal solubility in soils. Adv. in Soil Sci., 10, 2, 1989.
  • 14. SANTILLAN M.J., JURINAK J.J. The chemistry of lead and cadmium in soil.solid phase formation. Soil Sci. Soc. Amer. Jour. 39, 851, 1975.
  • 15. BUTCHER B., DAVIDOFF B., AMACHER M. C., HINZ C., ISKANDAR I. K., SELIM H. M. Correlation of Freundlich Kd and n retention parameters with soils and elements. Soil Sci., 148(5), 370, 1989.
  • 16. SUDUAN G., WALKER W.J., DAHLGREN R.A., BOLD J. Simultaneous sorption of Cd, Cu, Ni, Zn, Pb and Cr on soils treated with sewage sludge supernatant. Water, Air, and Soil Poll. 93, 331, 1997.
  • 17. RAWAT J.P., ANSARI A.A., SINGH R.P. Sorption equilibria of lead (II) on some Indian soils – the natural ions exchangers. Coll. Surf. 50, 207, 1990.
  • 18. SALIM I.A., MILLER C.J., HOWARD J.L. Sorption isothermsequential extraction analysis of heavy metal retention in landfill liners. Soil Sci. Soc. Amer. Jour., 60, 107, 1996.
  • 19. SPARKS D.L. Environmental soil chemistry. Academic Press Inc. San Diego, California. p. 267, 1995.
  • 20. POSNER A.M., BOWDEN J.W. Adsorption isotherms. should they be split? Jour. Soil Sci. 31, 1, 1980.
  • 21. HARTER D.R., BAKER D.E. Applications and misapplications of the Langmuir equation to soil adsorption. Soil Sci. Soc. Amer. Jour. 41, 1077, 1977.
  • 22. SPOSITO G. The surface chemistry of soils. Oxford University Press, Oxford, 1984.
  • 23. VEITH J.A., SPOSITO G. On the use of Langmuir equation in the interpretation of “adsorption” phenomena. Soil Sci. Soc. Amer. Jour. 41, 697, 1977.
  • 24. KINNIBURGH D.G. General purpose adsorption isotherms. Environ. Sci. Technol., 20 (9), 895-90426, 1986.
  • 25. SIBBESEN E. Some new equations to describe phosphate sorption by soils. Jour. Soil Sci., 32, 64, 1981.
  • 26. YANG C.H. Statistical mechanical study on the Freundlich isotherm equation. Jour. Coll. Interf. Sci., 208, 379, 1998.
  • 27. GEE G.W., BAUDER J.W. Particle size analysis. In “Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods”. Klute A. (ed) 2nd ed. pp. 383-411. Agron. Monogr. 9 ASA and SSSA, Madison, WI, 1986.
  • 28. WRB. World Reference Base for Soil Resources. 84 World Soil Resources Reports. FAO-ISSS-ISRIC.,1998.
  • 29. NELSON D.W., SOMMERS L.E. Total carbon, organic carbon and organic matter. In Sparks DL (ed.) “Methods of Soil Analysis”, pp. 961-1010. Part 3. Chemical Methods. SSA Book Ser. 5. SSSA, Madison, WI, 1996.
  • 30. Polska Norma. Polski Komitet Normalizacyjny, nr ref. PrPN-ISO 10390 (E), Jakość gleby i oznaczanie pH. Pierwsze wydanie. Polish Standard (1994). Polish Standardisation Committee, ref. PrPN-ISO 10390 (E), Soil quality and pH determination. First edition, 1994.
  • 31. KOCIALKOWSKI W.Z., RATAJCZAK M.J. A modified method for exchangeable cations and cation exchange capacity determination in soil according to Mehlich. Agricultural University Annuals, Poznan; CXLVI, 106-116, 1984 (in Polish).
  • 32. OSTROWSKA A., GAWLIŃSKI S., SZCZUBIATKA Z. Analiza gleb i roślin oraz metody oceny (Soil and plant analysis and evaluation methods). Instytut Ochrony Środowiska (Institute of Environmental Protection), 89, 95, 1991 (in Polish).
  • 33. CARTER D.L., MORTLAND M.M., KEMPER W.D. Specific surface. In “Methods of Soils Analysis, Part I – Physical and Mineralogical Methods” (A. Klute, ed.) 2nd ed.; pp. 413-423. Monogr. 9 ASA and SSSA, Madison, WI, 1986.
  • 34. LINDSAY W.L., NORVELL W.A. Development of a DTPA test for zinc, iron, manganese, and copper. Sci. Soc. Amer. Jour., 42, 421, 1978.
  • 35. SILLÉN L.G., MARTELL A.E. Stability constants of metalion complexes. The Chemical Society, London. Metcalfe and Cooper, Ltd, London. p. 865, 1971.
  • 36. ANDERSON P. R., CHRISTENSEN T. H. Distribution coefficients of Cd, Co, Ni and Zn in soils. Jour. Soil Sci., 39, 15, 1998.
  • 37. ATANASSOVA I., OKAZAKI M. Adsorption-desorption characteristics oh high levels of copper in soil clayn fractions. Water, Air and Soil Poll., 98, 213, 1997.
  • 38. CHRISTENSEN, T.H., ASTRUP, T., BODDUM, J.K., HANSEN, B.Ø., REDEMANN, S. Copper and zinc distribution coefficients for sandy aquifer materials. Wat. Res., 34(3), 709, 2000.
  • 39. PELZER J. Der Einfluss der konzentration auf die Verteilung von Blei, Cadmium und zwischen fester und flussiger Bodenphase. Arch. Acker-Pflanzenbau Bodenkd. 33(2).105, 1989.
  • 40. DIATTA J.B. Influence of correction values on sorption parameters. Case of lead. Pol. Jour. Environ. Stud., 11(3), 237, 2002.
  • 41. SCHULTE A., BEESE F. Isotherms of cadmium sorption densities. J. Environ. Qual., 23, 712, 1994.
  • 42. ZEHETNER F., WENZEL W.W. Nickel and copper sorption in acid soils. Soil Sci. 165(6), 463, 2000.
  • 43. CRITTER S.A.M., AIROLDI C. Adsorption-desorption processes of calcium on Brazilian soils. Geoderma, 111, 57, 2003.
  • 44. IZOTERMY©. Wersje 1.0; 1.1; 1.2. Biuro Projektów Informatyki, A. Ratajczak, Poznań. (Version 1.0; 1.1; 1.2. Office for Informatic Projects), 1993.
  • 45. RACZUK, J. Poludniowopodlaska lowland ecosystem soil buffer capacity. Electr. Jour. Pol. Agric. Univ. Agronomy, Vol. 4(1), 1, 2001 (http.//www.ejpau.media.pl/series/volume4/issue1/agronomy/art-01.html).
  • 46. CLAYTON J.L., KENEDY D.A., NAGEL T. Soil response to acid deposition. Wind River Mountains, Wyoming. I. Soil properties. Soil Sci. Soc. Amer. Jour., 55, 1427, 1991.
  • 47. APPEL C., MA L. Concentration, pH and surface charge effects on cadmium and lead sorption in three tropical soils. Jour. Environ. Qual. 31, 581, 2002.
  • 48. SCHULTHESS C.P., HUANG C.P. Adsorption of heavy metals by silicon and aluminium oxide surfaces on clay minerals. Soil Sci. Soc. Amer. Jour. 54, 679, 1990.
  • 49. ABD-ELFATTAH A., WADA K. Adsorption of lead, copper, zinc, cobalt and cadmium by soils that differ in cation exchange materials. Jour. Soil Sci., 32, 271, 1981.
  • 50. ELLIOTT H.A., LIBERATI M.R., HUANG C.P. Competitive adsorption of heavy metals by soils. Environ. Qual., 15(3), 214, 1985.
  • 51. ALTIN O., OZBELGE O.H., TOGU T. Effect of pH, flow rate and concentration on the sorption of Pb and Cd on montmorillonite. I. Experimental Jour. Chem., Technol. and Biotechnol. 74, 1131, 1999.
  • 52. KINNIBURGH D.G., JACKSON M.L., SAYERS K.J. Adsorption of alkaline earth, transition and heavy metal cations by hydrous oxide gels of iron and aluminium. Soil Sci. Soc. Amer. Jour., 40, 796, 1976.
  • 53. SAUVÉ S., MCBRIDE M., HENDERSHOT W.H. Soil solution speciation of lead (II). Effects of organic matter and pH. Soil Sci. Soc. Amer. Jour., 62, 618, 1998b.
  • 54. GILES C.H., MACEWAN T.H., NAKHWA S.N., SMITH D. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurements of specific surface areas of solids. Jour. Chem. Soc., 786, 3973, 1960.
  • 55. DAVIS J.A., LECKIE J.O. Surface ionization and complexation at the oxide-water interface. II. Surface properties of amorphous ion oxyhydroxide and adsorption of metal ions. Jour. Coll. Interf. Sci., 67, 90, 1978.
  • 56. SCHINDLER P.W., FURST B., DICK R., WOLF P.U. Ligand properties of surface silanol groups. I. Surface complex formation with Fe³⁺, Cu²⁺, Cd²⁺ and Pb²⁺. Jour. Coll. Interf. Sci., 55, 469, 1976.
  • 57. DIATTA J.B., KOCIAŁKOWSKI W.Z., GRZEBISZ W. Lead and zinc partition coefficients of selected soils evaluated by Langmuir, Freundlich, and Linear isotherms. Commun. Soil Sci. Plant Anal., 34 (17&18), 2939, 2003.
  • 58. ELZINGER E.J., VAN GRINSVEN M.J., SWARTJES F.A. General of Freundlich isotherms for cadmium, copper and zinc in soils. Eur. Jour. Soil Sci., 50, 139, 1999.
  • 59. KOCIALKOWSKI W.Z., DIATTA J.B., GRZEBISZ W. Assessment of lead sorption by acid agroforest soils. Pol. Jour. Environ. Stud., 8(6), 403, 1999.
  • 60. NARWAL R.P., SINGH B.R. Sorption of cadmium, zinc, copper and lead by soils developed on alum shales and others materials. Norweg. Jour. Agric. Sci., 9, 177, 1995.
  • 61. SOKOŁOWSKA Z. Rola niejednorodności powierzchni w procesach adsorpcji zachodzących na glebach (The role of surface uniformity on adsorption processes occurring in soils) Problemy Agrofizyki, 58, 1, 1989.
  • 62. BENJAMIN M.M., LECKIE J.O. Conceptual model for metal-ligand-surface interactions during adsorption. Environ. Sci. Technol., 15, 1050, 1981.
  • 63. BOEHRINGER I. M. Echanges cationiques avec des métaux lourds sur la tourbe acide. Thèse de Doctorat Ecole Polytechnique, Fédérale, Zurich ; No. 6700. 131 p., 1980.
  • 64. BUNZL K., SCHMIDT W., SANSONI B. Kinetics of ion exchange in soil organic matter. IV. Adsorption and desorption of Pb²⁺, Cu²⁺, Cd²⁺, Zn²⁺ and Ca²⁺ by peat. Jour. Soil Sci., 27, 32, 1976.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-13940874-2002-40c3-81fe-6d03dfa42ac1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.