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Abstract. A model is presented for prediction of 

crack network geometry in clay soils. The starting point is 

the similarity between a crack network in rocks and that in 

soils, and, hence, principles of multiple crack formation in 
rocks can be used. The model estimates the mean crack 

width, crack cross-section area, and crack volume. Special 

verification of the model was done with published data on 

these characteristics in the micro-shrinkage depth range. 

Agreement between the data and the model predictions for 

these depths is satisfactory. 
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INTRODUCTION 

Drying clay soils can be divided into two 

interacting subsystems: the soil matrix and the 

shrinkage crack network. Modelling the ge- 

ometry of a crack network in a swelling clay 

soil is an important step in describing the hy- 

draulic properties of such soils, preferential 

flow, and solute transfer. We may distinguish 

between the upper soil layer of macro-shrink- 

age with cracks of widths > one mm and the 

lower soil layer of micro-shrinkage where 

crack widths < one mm. The major objectives 

of this work are to propose a model of the geo- 

metrical characteristics of cracks in drying 

clay soils and to verify the model predictions 

by using data available in literature on crack 

widths and specific volume in the depth range 

of micro-shrinkage. 

A shrinkage crack is characterized by its 

  

* Paper presented at 6 ICA 

width and two dimensions of its surface, ap- 

preciably larger than the width (for vertical 

cracks these two dimensions are the crack 

depth and the length of its trace at the soil sur- 

face). In this work “crack dimension” stands 

for the maximum dimension of a crack (we as- 

sume that for a vertical crack it is its depth). 

Orientation, position, and dimensions of a 

separate crack in a homogeneous brittle mate- 

rial can be predicted, in principle, if the exter- 

nal stress field is known [4]), and in this sense 

are non random. However, in case of multiple 

cracking in a volume and/or random distribu- 

tion of strength properties of material (hetero- 

geneity) these crack characteristics can not be 

predicted (before actual measurements) and 

are described by distributions of probability 

density (see, e.g., [14]) or averages on distribu- 

tion. In this presentation the crack network ge- 

ometry implies the distribution of cracks, their 

volume and cross-section area in a Soil vo- 

lume, and the distribution of their dimensions. 

INFLUENCE OF WATER CONTENT ON CRACK 
NETWORK 

In continuum mechanics, flow in swelling 

soils, unlike in soils with rigid matrix, is usual- 

ly described by the material coordinate approach 

(see, e.g., [1,15]). The water content profile 

and its variations in time play a principal role
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in such a description. Shrinkage cracks, ap- 

pearing in the drying process, are not treated 

separately, but considered as a part of the 

structural porosity. Our aim is to describe ex- 

plicitly the shrinkage-crack network as one of 

two interacting subsystems of swelling soil. 

Let us consider an effect of water content 

profile in cracking by shrinkage. Its influence 

on deformation and cracking of drying clay 

soils manifests through a volume shrinkage, 

OV(z), a horizontal-surface shrinkage, d(z), 

and a vertical shrinkage, €(z) of soil matrix as 

functions of soil depth. In case of isotropic 

shrinkage (considered below) these functions 

are determined by the water content profile 

and shrinkage curve of the soil matrix. Vol- 

ume shrinkage, dV consists of two contribu- 

tions corresponding to a soil subsidence and a 

volume of appearing cracks [3]. Both crack- 

ing (that is all characteristics of crack net- 

work) and subsidence at any soil depth are 

functionals of functions €(z) and d(z). How- 

ever, in the hypothetical case where 6(z)=0 

there is only subsidence, and in the opposite 

case where e(z)=0 there is only cracking. So 

one may assume that the influence of horizon- 

tal-surface shrinkage Ó(z) on cracking is rather 

stronger than that of vertical shrinkage =(2). 

Accounting for also that at all depths as a rule 

e<<] and Ó<<] we can consider that geometri- 

cal characteristics of a shrinkage-crack net- 

work depend (as functionals), in the first ap- 

proximation, on the horizontal-surface shrink- 

age only. Consequently, regarding crack net- 

work geometry in frame of this approximation 

we can use the usual concept of soil depth as 

measured relative to the soil surface (as in ex- 

perimental works [9,17,18]). 

MODEL OF MULTIPLE CRACK FORMATION 

There is a far-reaching similarity between 

cracks in rocks and in swelling clay soils, if 

dry enough. In both systems, in spite of their 

differences: a) cracking is related to a multiple 

crack formation, typical of which is the large 

number of cracks in a given volume and their 

small dimensions compared with the charac- 

teristic dimension of the volume; b) cracking, 

accompanied by crack opening, is of the same 

physical nature and is caused by superficial 

cooling (igneous rocks) or drying (sedimen- 

tary rocks and swelling clay soils); c) crack 

systems that divide or almost divide the vo- 

lume into blocks (for rocks) or peds (for soils) 

are developed; d) the distribution of the inter- 

vals between the intersections of the cracks 

with an arbitrary line is related to one type [9, 

12]; e) inhomogeneity of cracking conditions 

results in regular spatial changes of crack and 

block (ped) patterns (e.g., the changes of the 

block dimension distribution with rock depth 

and the ped dimension distribution with soil 

depth). Peculiarities of a clay soil cracking are 

connected with the cyclic (seasonal) nature of 

the shrinkage-swelling processes. Neverthe- 

less, the generality, mentioned above, suggests 

that the spatial distribution of cracks (in homo- 

geneous conditions, 1.e., locally) and the crack di- 

mension distribution (except the crack width) 

can be, in both systems, described within a 

framework of common concepts. In earlier 

works Chertkov [5,6] proposed a model of 

multiple crack formation to describe cracking 

and fragmentation of rocks. Using data of 

Guidi et al. [11] he applied the model to de- 

scribe statistically homogeneous cracking of 

soils [8]. The rock cracking model is used here 

as the basis for a model of crack network ge- 

ometry in clay soils that takes into account the 

shrinkage-swelling transitions and the changes 

that depend on depth. First, let us summarize 

the major concepts and relationships of the ba- 

sic model [5,6]. 

Multiple cracking and fragmentation 

concepts 

It is assumed that cracking is statistically 

uniform and that a fragment, as well as a 

crack, is characterized by a single dimension 

(among the cracks forming the faces of a frag- 

ment there is one of a maximum dimension - 

the fragment is characterized by this dimen- 

sion). Multiple crack formation is the concept 

implying the following three points: a) partici- 

pation (in the process of crack accumulation) 

of cracks of all possible dimensions starting



CRACKS IN SWELLING CLAY SOILS 159 
  

from microcracks; b) randomness of the crack 

arrangement; and c) effective independence of 

cracks. These are shortly discussed in the fol- 

lowing. 

The participation of cracks 

of all possible dimensions 

The basic concepts of disk-shaped micro- 

cracks of any orientations in a volume of ma- 

terial, proposed and validated by Zhurkov et 

al. [19,20] are: a) for a brittle material the 

characteristic dimension of micro-cracks (their 

diameter), / is considered to be constant (for 

clay soils one can consider / to be that of a 

clay particle, <2 um); b) in a small enough 

volume the distribution of micro-cracks is uni- 

form, in a uniform stress field; c) in a large 

enough volume random clusters of micro- 

cracks are formed, and their uniform distribu- 

tion is destroyed; d) as the mean concentration 

of micro-cracks in the 3-dimensional cluster, n 

increases to a critical value, n» instability oc- 

curs when the ratio (K) of the linear dimension 

of the average volume occupied by one micro- 

crack (nV 3) to the dimension (/) of the micro- 

crack itself, 1.e., K=n"B/], decreases to the 

critical value, K+=n4"*/I, below which an 

avalanche-like crack coalescence occurs; e) ba- 

sed on data for various materials K,=2.56-6; 

for rocks and soils Kx=5; f) the value K; is the 

same for the coalescence of micro-cracks of 

different orientations. For macro-cracks >>/, 

Zhurkov et al. [19,20] found that the critical 

value, Ks is independent on scale and is appli- 

cable to clusters of cracks of any dimension. 

Consequently, a crack of the dimension x is, 

on the average, considered to result from a 

number of sequential coalescences of increas- 

ingly larger cracks within an initial crack-like 

cluster of micro-cracks. Hence, the dimension 

x 1s defined by the number of sequential coa- 

lescences, i and the size of a minimal cluster 

of two micro-cracks, ranging from ~2/ to ~ 

(K,+1)/. The final dimension x of the crack 

maybe written in the form [5]: 

[> 0.3 x= (Ke +1)'/, (1) 

where i is not only the integer, but any 

number, beginning from i=0.3, for which 

x=2/ (minimal cluster). According to Eq. (1) 

cracks whose dimensions differ by less than 

(K,+1) times are considered to be of a similar 

dimension. The interval of change in the di- 

mension of “similar” cracks bounding a frag- 

ment, Ax corresponds to the unit interval of 

change in the parameter i: Ax <> Ai=1. 

The randomness of the crack 

arrangement 

Taking into account the above and the 

random crack arrangment, we can introduce: 

a) a local concentration of “similar” cracks in 

the range Ai=1, №. (х), as the derivative of 

the concentration of connected cracks of all 

dimensions <x with respect to i(x); b) the in- 

tuitively obvious condition that similar cracks 

of an “average” dimension x are connected, or 

almost connected, and form a fragment of the 

same dimension, if their local concentration 

N.(x) is such that the dimension of the area 

taken by one crack does not exceed the dimen- 

sion of the crack itself: N,(x) ~~ /x <1; and 
c) an average concentration, N.(x) of con- 

nected cracks (the average of the random 

quantity, N,(x)) and an average cracking, 
I(x) = N,(x)x° (the average number of connec- 
ted cracks of dimension x in a volume of x”). 

Effective independence of cracks 

In the case of multiple crack formation the 

interaction between two separate cracks that 

develop under the action of shrinkage stresses 

are assumed to be small compared with the ef- 

fect of all the cracks surrounding any one of them. 

In this meaning, cracks are independent. This 

is confirmed by data of Hudson and Priest [12] 

and Scott et al. [14] and leads to a Poisson dis- 

tribution of the number of cracks of a given di- 

mension in a randomly selected volume [10]. 

Expression for average cracking 

Let us consider a network of intersecting 

cracks and assume that the average spacing, d 

between neighboring intersections of cracks 

with a straight line is similar at all orientations
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of the line. Then based on the data of Hudson 

and Priest [12], Scott et al. [14], and the effec- 

tive independence of cracks, we may use the 

approximation, exp(-x/d)/d°, for the average 

x 

concentration, | N(x)dx of all types of cracks 
x 

(both connected and isolated of any orientation) 

of dimensions >x, where x is the maximum 

crack dimension; N(x) is the average concen- 

tration of cracks in a unit interval around x 

value. Then, the average concentration of all 

types of cracks with dimensions between x 

and x+dx is the differential of exp(—x/d)/d? 

with respect to x: 

N(x)dx =(exp(-x/d)/d*\de. (2) 

The concentration of the connected cracks 

of all dimensions is some fraction, c of the 

concentration of all cracks. This quantity, c<1 

will be referred to as connectedness. Accord- 

ing to the definitions of N(x), N(x), and c: 

меда = мк. | ©) 
x 

Differentiating Eq. (3) with respect to x 

and accounting for Eqs (1) and (2), one can 

obtain the expression of the average cracking, 

Цх) = № (x)x° (in the 3-dimensional case): 

I(x) = In( Ks + e(x/d)* exp(-x/d). (4) 

Probability of connection of cracks 

The above condition of connection of 

cracks and the Poisson distribution lead to the 

probability, f(x) of connection of cracks of any 

orientation of dimension x [5]: 

f(x)=1- exp(-Z(x)). (5) 

The maximum dimension, x,, of the frag- 

ments is found as the point of maximum of 

Ix) [5]: 

Xm/d=4, (6) 

and the fragment formation probability, Ги, аз 

derived from Eqs (4) and (5) at x = x,, [6], 1s: 

fm =1-ехр(-8.4с). (7) 

Equations (4) - (7) describe connected 

cracks which are the surfaces of fragments. In 

a two-dimensional case (e.g., a horizontal 

cross-section) it follows from the general ap- 

proach that the power of the argument x/d in 

Eq. (4) as well as the right hand side of Eq. (6) 

should be 3 instead of 4 [8]. 

Feasibility of the model was verified by da- 

ta on natural rock blocks as well as their blast 

fragmentation [5,6]. Its applicability to crack- 

ing soils was checked in part in works [7,8]. 

AVERAGE CRACK SPACING AND 
CONNECTEDNESS AS FUNCTIONS OF DEPTH 

The above model describes statistically- 

homogeneous cracking. In real soils crack 

concentration changes with depth. This means 

a dependence of the characteristics d (or x,,) 

and c (or f,,) on soil depth z. We assume that 

in a clay soil the crack network geometry is 

determined solely by the vertical water content 

profile. We define a “shrinkage layer” of 

thickness z, as a layer with macro-cracks of a 

depth that can be measured by a flexible wire 

[9,17,18] (Fig. 1). An important parameter of 

the model is the maximum crack depth, z,,. 

Physically z= z,, is the depth where connected 

0 0.5 1 
  

PZ Jm 

Macro width of 

crack (> 1073 m) 

  
YZ 

“o 

  

Maximum crack — 

              
Micro width of 

crack (<10-5m) |< 27 V. 
: |.90) 

Maximum crack depth zm 

У 

Fig. 1. Scheme of a cracked soil layer (horizontal cracks 

are not shown): 0 - the soil surface; z. - the depth of the 

boundary of the intensive-cracking layer; 2, - the “shrink- 

age layer” depth; z, = 0.75z; z - depth averaged on the 
probability f(z); z ,=l.25z - the maximum depth of 

cracks; d(z)=z/4 - the half width of a transitional layer.
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cracks and separated peds cannot appear (Fig. 

1) so that: 

fm(zm)=0. (8) 

We assume that in the limiting case the boun- 

dary z,, is the water-table level. The diffe- 

rence z,, —z, is about the size of the сарШагу 

fringe which according to Bouma and Loveday 

[2] 1$: 

Zm — Zs = Several meters. (9) 

Shrinkage increases closer to the soil surfa- 

ce and there is an upper layer (of a few tens of 

cm) of intensive cracking of a depth z, (Fig. 1) 

that we define by the following condition: 

d(z,)=Zo. (10) 

This condition provides a measurable criterion 

to determine z, and means that the average 

spacing d between neighboring intersections 

of cracks with a straight line at depth z, is 

equal to the latter. Thus, the depth z, is an- 

other important parameter of the model. We 

assume that (Fig. 1): 

20 <2;. (11) 

This assumption will be checked below by 

comparing estimates of z, with data on z, 

(Table 1, case numbers 1-8). It should be 

noted that entered parameters z,, and z, are 

functionals of variation of the horizontal sur- 

face shrinkage, 5(z) with depth. Explicit form 

of these functionals here is not used. Except 

that, the horizontal surface shrinkage enter ex- 

plicitly in the definition of crack width (see 

below Eq. (28)). 

The probability f,„(z) of finding a sepa- 
rate ped diminishes from a maximum at the 

soil surface to zero at z=z,, (see Eq.(8) and 

Fig. 1). One may introduce a depth, z=Z ave- 

raged on this probability (Fig. 1) which gives 

the maximum depth where in the volume 

~ (Xm (2) , on the average, one may still find 
a separate ped or else connected cracks. This 

parameter will be expressed through z,,. 

At the soil surface the number of cracks is 

very large, and one can assume that x,,(z) =0 
for z=0. Considering also the monotonic in- 

crease of x_(z) with depth, one may approxi- 

mate it as: 

Xm(z) = А(2/ 20)” (12) 

where A and w are assumed to be constants. 

According to Eqs (6) and (10) the maximum 

ped dimension at the depth z = z, is: 

хт(2о ) = 420. (13) 

It is reasonable also to assume that the 

maximum ped dimension x,, at the averaged 

depth z = Z is equal to the distance z from the 

soil surface: 

хт(2)=2 (14) 

(it does not mean, of course, that the largest 

dimension of an arbitrary ped at z=Z, i.e. x, 

is necessarily oriented along the vertical direc- 

tion). From Eqs (12)-(14) and Eq. (6) one 

finds that: 

d(z) = z,(z/ z)” 15) 

where 

w =1—2ln2/ln(z/z,), (0<@ <1) (16) 

For typical values w=0.3 and z,~30-60 
cm, da(z) increases rapidly with depth only in 

the first few millimeters. The condition, @ >0 

means that the average distance, d(z) must in- 

crease with depth, and by accounting for Eq. 

(16) gives the relation between the parameters 

z and z, (see Fig. 1): 

2/20 >4. (17) 

In order to express z through z,, (see Fig. 

1) and to estimate the range of variation of the 

ratio z,,/ z, we use the following assumptions 

concerning the function /,,(z): a) the depth 
z=zZ is at the middle of a transitional layer 

with most of the f,,(z) variation (Fig. 1); and 
b) the half-width of the transitional layer at the
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depth z=z is equal to the mean ped di- 

mension d(Z) at that depth (Fig. 1). With 
these assumptions the boundaries of the tran- 

sitional layer are at 21=2-4(2) and 

Zz) =Z+d(zZ), respectively. According to Eqs 
(6) and (14) d(z)=Z/4. Moreover, the first 
assumption and Eq. (8) lead to z) =Z». 

Hence: 

zyi=Z-d(z)=0.75Z, 2т=Е+а(2)= 1.255, 

(18) 
Replacing z from Eq. (18) in Eq. (17) we 

get, besides Eqs (9) and (11), the inequality: 

(19) 

In the range 0S z<2Zm, fn(z) decreases 
from unity to zero (Fig. 1). With the above as- 

sumptions and Eq. (18) this may be written as 

follows: 

1.e., Z =0.8z,,. 

2т/ 20 >5. 

1-72) <<1 Ш 250.752, 

and 

J„(z) <<1 if z—z„=l.25z. (20) 

It is assumed that either half of the transi- 

tional layer includes half of the variations of 

fm(z) from unity to zero (Fig. 1). Hence: 

Sm(Z) = 05. (21) 

Eqs (20), (21) and (17) lead to the simple ap- 

proximation of the dimensionless function de- 

pending on the ratios z/z, and Z/z,: 

—1 
fJm(z)= (1+exp((z-Z)/ z, )) (22) 

The connectedness, c as a function of soil 

depth, z results from Eqs (7) and (22): 

c(z) = In(1 + exp(-(z —z)/z, ))/ 8.4. (23) 

In Eqs (22) and (23) one may use Z ac- 

cording to Eq. (18). The condition, c(0)<1 

gives, according to Eq. (23), an estimate for 

the maximum of the parameter z,,/z,, and 

with Eq. (19) we have: 

5<z,/z, <=10.5. 24) 

Using the extreme values of Eq. (24) and 

Eqs (22) and (23) we can find the range of val- 

ues of c and f,, at the surface and at the 

boundary of the intensive-cracking layer, 

2=20: 

0.48 <= с(0) <1 and 0.36 <= c(z, ) <= 0.88 

(25) 

and 

0.98 <= f/„(0) <=1 and 0.95 <= f,„(z,)<=l. 

(26) 

According to Eqs (25) and (26) the values 

of the connectedness in this layer can be as 

small as 0.36, but they correspond to quite a 

large volumetric fraction of peds (/, 2 0.95). 

Hence, the model is self-consistent. In the lim- 

iting case the maximum crack depth, z,, is as- 

sumed to be close to the water-table level. For 

the maximum value of one can consider 

Zo =0.1z,, (Eq. (24)) because, in the limiting 

case, c(0)=1. However, in any case, accord- 
ing to Eq. (11), we have z, S$ Z,. 

GEOMETRICAL CHARACTERISTICS 
OF SHRINKAGE CRACKS 

In the following the term “crack” means a 

vertical crack. The model was applied to esti- 

mate the width, the cross-section area, and the 

volume of the cracks. First the basic model [5, 

6] was used to define the mean specific length 

of the crack traces per unit area of a horizontal 

cross-section, L(z) (the function N(x,d) is 
given by Eq. (2)): 

I xN(x,d(z)) dx = 

[1 (1+2 /a(z))exp(-zm/d(z))|/a(z). (27) 

This specific length together with the ver- 

tical variation of the horizontal-surface shrink- 

age, 5 (2) determines the expressions for the 

crack width at a depth z: 

L(z)=



CRACKS IN SWELLING CLAY SOILS 163 
  

R(z,k)=|L(z)'aó(z) z<h (28) 
h 

(where h is crack-tip depth), for the cross-sec- 

tion area of cracks at the soil surface (the 

crack tips are between depths x and у): 
x 

A(x,y)=|R(0,h)dL(h), O<x<y<z, (29) 
У 

and for the specific crack volume (per unit 

volume of soil): 

V (z,zg) = | R(z, h)dL(h) , 

2m 

(30) 

MATERIALS AND METHODS 

To obtain model predictions of the crack 

width and specific volume in the micro- 

shrinkage depth range in swelling soils, as 

functions of soil depth, we used data on 

“depth - linear shrinkage” curves for seven- 

teen field cases (El Abedine and Robinson 

[18] - eight cases; Yaalon and Kalmar [17] - 

six cases; Dasog et al. [9] - three cases). How- 

ever, in these cases the “depth - linear shrink- 

age” curves are only in the macro-shrinkage 

depth range, z<z, as measured by a flexible 

wire of a given thickness (D=1.5 mm [17], 2 

mm [9], 3 mm [18]). So we applied the fol- 

lowing approach to estimate the linear shrink- 

age in the soil matrix, e(z) in the micro 
-shrinkage depth range (z;<z<z), based 
on the depths z,,,z, Zs and the diameter of a 

flexible wire, D. From the view point of meas- 

urements by a flexible wire [18] shrinkage be- 

low the depth z, is absent. However, actual 

shrinkage of the horizontal surface at this 

depth, 5(z,) can be estimated by: 

5(z,) = L(z,)D (31) 

where L(z,) is a specific length of crack 

traces on a horizontal cross-section (see Eq. 

(27)) at depth z,. One can estimate the value 

L(z;) using the values z,,z,,z, and Eqs 

(15), (16), (18) and (27). To estimate the cor- 

responding linear shrinkage at depth zy, e(z,) 

one can use Eq. (31) and the relation: 

5 =e(2-€). (32) 

On account that the value of €(z,) is very 
small (according to our preliminary estimates 

(1+4)107°) we use a linear approximation for 
the dependence of € on z in the micro-shrink- 

age depth range: 

e(z)=e(z,) (z„-z)/(z,-z,), 2.5252 (33) m 

Values of z,, z, for eight profiles of El 

Abedine and Robinson [18] were found by 

least-square estimates of the mean crack width 

in the macro-shrinkage depth range. z,, and z, 

do exist, they are of a single value and meet 

Eqs (9) and (11) and the relation for the maxi- 

mum value z,=0.1 z,. The latter was used 

also for estimating z, by z,,=225 cm of works 

[16,17], and z, by z,=76 cm of work [9]. Val- 

ues of z,, z,, z, used for model predictions of 

crack width and specific volume in the micro- 

shrinkage depth range in all seventeen cases of 

works [9,17,18] are given in Table 1. 

In the works [9,17,18] there are data on 

crack width and specific volume only for the 

macro-shrinkage depth range (z<z,). So, model 

predictions, calculated with the values Z Z 

z, from data of El Abedine and Robinson [18], 

Yaalon and Kalmar [17], Dasog et al. [9], were 

compared with data on specific volume and 

mean width of vertical cracks in the micro- 

shrinkage depth range from McKay et al. [13]. 

According to these data, in the micro-shrink- 

age depth range (1.5-5.5m) porosity and 

width of vertical cracks ranges from 2 10° to 

3 10”to and from 43 to 1 Um, respectively. 

RESULTS AND DISCUSSION 

Figures 2 and 3 show, as an example, the 

predicted dependencies of crack width, R and 

crack porosity (specific volume), V on soil 

depth, z in the micro-shrinkage depths range 

for profile GHBTO7 from El Abedine and 

Robinson [18]. The dependencies R(z) and V(z) 

for the rest sixteen cases are similar with 

corresponding changes in values of z, and z,, 

(Table 1). It may be seen that crack porosity 

predictions, in the micro-shrinkage depth
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Table 1. Depth of macro-shrinkage layer z „ model parameters, z, z, and model predictions for crack width, R and 
porosity, V, at depth z=(z „tz )/2 for seventeen cases 

  

  

Case Reference Measured Thickness Maximum Crack width Crack 

number number depth of of intensive- crack predictions porosity 

and profile macro cracking depth for predictions 

designation -shrinkage layer, z,, (cm) z=(z,,+2,)/2, for 

or date layer, z, (cm) R (um) z=(z,,+2,)/2, 

z, (cm) v 10% 

l [18] GTO3 45 44* 524* 250 3.5 

2 [18] GTO4 60 49* 540* 200 3 

3 [18] GTOS 60 29* 360* 180 4 

4 [18] GTO6 55 41* 420* 170 3 

5 [18] 04H 75 36* 290* 75 2 

6 [18] 04MH 75 37* 262* 55 1.5 

7 [18] GHATOS 120 32* 293 70 1.8 

8 [18] GHBTO7 120 61* 569* 120 1.5 

9 [17] 30.05.74 30 21.4* 225** 90 3 

10 [17] 20.06.74 40 21.4* 225** 70 2.5 

11 [17] 16.07.74 80 21.4* 225** 45 1.5 

12 [17] 26.08.74 70 21.4* 225** 50 1.6 

13 [17] 19.09.74 80 21.4* 225** 45 1.5 

14 [17] 21.10.74 80 21.4* 225** 45 1.5 

15 [9] 26.07.84 80 76** 800* 130 1.3 

16 [9] 09.08.84 100 76** 800* 115 1.2 

17 [9] 06.09.84 120 76** 800* 105 1 
  

*Calculated by least-square estimates or by the relation z,=0. 

range, are within the limits of experimental 

values (2: 10-3-3. 10-2) [13]. However, crack 

width predictions are within such limits (43 -- 1 

ит) [13] in only part of depth range z,<z<z,,, 

adjacent to depth z„. The reason for such be- 

havior may be the following. In frame of the 

approximation by Eq. (31) estimates of R and 

V depend not only on the model parameters 

z,» z, and the experimental depth of the macro- 

shrinkage layer, z,, but also on the diameter, D 

of the wire used in the experiment. The value 

of the latter reflects not the shrinkage cracking 

phenomenon in itself, but peculiarities of the 

measurement method in works [9,17,18]. 

However, at depths in distance limits of ~(z,,- 

z,)/2 to the depth z, the "depth-linear shrink- 

age” curve given by Eq.(33) does not, 

practically, depend on D. Therefore at these 

depths (~(Z,,-z,)/2SzSz,,) both V and R cal- 

culated by the model lie, for all the seventeen 

cases, in the limits of data from McKay et al. 

[13] or coincide with them in order of magni- 

l Z; **Меазигед. 

tude. Values of R and V at z=(z-z,)/2 are 

given in Table 1. 

CONCLUSION 

The feasibility of the model approach to 

describe crack network geometry in swelling 

clay soil has been verified by showing agree- 

ment between the model predictions and pub- 

lished data on crack width and porosity in the 

micro-shrinkage depth range. Consequently it 

may be used as the basis for a model to de- 

scribe hydraulic properties of vertisols. 
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