PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 57 | 4 |

Tytuł artykułu

Isometric scaling relationship between leaf number and size within current-year shoots of woody species across contrasting habitats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The scaling relationship between the number and size of plant’s components has been observed traditionally as reflective of a trade-off in resource allocation over ontogeny. The recent finding of a negative isometric leaf size/number trade-off across 24 deciduous woody species extends knowledge of such trade-offs to current-year shoots. Before generally accepted, this isometry has to be consistent across more datasets that represent diverse habitats. We tested this scaling relationship using 12 deciduous shrub species from the western Gobi Desert and 56 woody species from the northeastern temperate zone of China. Our results showed that leaf number per stem mass of current-year shoots scaled approximately isometrically with individual leaf mass within and across habitats, which, combined with the independence of total leaf mass and individual leaf mass, supports isometric scaling for shoot-scale leaf deployment. However, the intercepts of these relationships decreased significantly along the environmental gradients, suggesting that habitats could place a constraint on the total leaf number that can be supported by a given size shoot. Convergence towards higher leaf number and smaller leaf size for some desert species suggests important adaptive implications for photosynthetic carbon gain and reproductive growth.

Wydawca

-

Rocznik

Tom

57

Numer

4

Opis fizyczny

p.659-667,fig.,ref.

Twórcy

autor
  • Lanzhou University, Lanzhou, Gansu Province 730000, China
autor
autor
autor
autor

Bibliografia

  • Ackerly, D.D., Donoghue M.J. 1998 – Leaf size, sapling allometry, and Corner’s rules: phylogeny and correlated evolution in maples (Acer) – Am. Nat. 152: 767–791.
  • Ackerly, D.D., Dudley, S.A., Sultan, S.E., Schmitt, J., Coleman, J.S., Linder, C.R., Sandquist, D.R., Geber, M.A., Evans, A.S., Dawson, T.E., Lechowicz, M.J. 2000 – The evolution of plant ecophysiological traits: recent advances and future directions – BioScience, 50: 979–995.
  • Barthelemy D., Caraglio Y. 2007 – Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny – Ann. Bot. 99: 375–407.
  • Bloom, A.J., Stuart Chapin, I.F., Mooney, H.A. 1985 – Resource limitation in plantsan economic analogy – A. Rev. Ecol. Syst. 16: 363–392.
  • Brouat C., McKey D. 2001 – Leaf-stem allometry, hollow stems, and the evolution of caulinary domatia in myrmecophytes – New Phytol. 151: 391–406.
  • Casper B.B., Forseth I.N., Kempenich H., Seltzer S., Xavier K. 2001 – Drought prolongs leaf life span in the herbaceous desert perennial Cryptantha flava – Funct. Ecol. 15: 740–747.
  • Cornelissen J.H.C., Lavorel S.G., Díaz S.M., Buchmann N., Gurvich D.E., Reich P.B., ter Steege H., Morgan H.D., van der Heijden M.G.A., Pausas J.G., Poorter H. 2003 – A handbook of protocols for standardised and easy measurement of plant functional traits worldwide – Aust. J. Bot. 51: 335–380.
  • Deng J.-M., Wang G.-X., Morris E.C., Wei X.-P., Li D.-X., Chen B.-M., Zhao C.-M., Liu J., Wang Y. 2006 – Plant massdensity relationship along a moisture gradient in north-west China – J. Ecol. 94: 953–958.
  • Ezcurra E., Montaña C., Arizaga S. 1991– Architecture, light interception, and distribution of Larrea species in the Monte Desert, Argentina – Ecology, 72: 23–34.
  • Falster D.S., Westoby M. 2003 – Leaf size and angle vary widely across species: what consequences for light interception? – New Phytol. 158: 509–525.
  • Gleeson S.K., Tilman D. 1992 – Plant allocation and the multiple limitation hypothesis – Am. Nat. 139: 1322–1343.
  • He J.-S., Wang Z., Wang X., Schmid B., Zuo W., Zhou M., Zheng C., Wang M., Fang J. 2006 – A test of the generality of leaf trait relationships on the Tibetan Plateau – New Phytol. 170: 835–848.
  • Hener y M.L., Westoby M. 2001 – Seed mass and seed nutrient content as predictors of seed output variation between species – Oikos, 92: 479–490.
  • Heuret P., Meredieu C., Coudurier T., Courdier F., Barthelemy D. 2006 – Ontogenetic trends in the morphological features of main stem annual shoots of Pinus pinaster (Pinaceae) – Am. J. Bot. 93: 1577–1587.
  • Kleiman D., Aarssen L.W. 2007 – The leaf size/number trade-off in trees – J. Ecol. 95: 376–382.
  • Leishman M.R. 2001 – Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality – Oikos, 93: 294–302.
  • Liu Y.B., Wang G., Liu J., Zhao X., Tan H.J., Li X.R. 2007 – Anatomical, morphological and metabolic acclimation in the resurrection plant Reaumuria soongorica during dehydration and rehydration – J. Arid Environ. 70: 183–194.
  • McDonald P.G., Fonseca C.R., Overton J.M., Westoby M. 2003 – Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? – Funct. Ecol. 17: 50–57.
  • Molles M.C., Jr. 1999 – Ecology: Concepts and Applications – McGraw-Hill Companies, Inc., New York, 509 pp.
  • Mulroy T.W., Rundel P.W. 1977 – Annual plants: adaptations to desert environments – BioScience, 27: 109–114.
  • Niklas K.J. 1988 – The role of phyllotactic pattern as a “developmental constraint” on the interception of light by leaf surfaces – Evolution, 42: 1–16.
  • Niklas K.J., Cobb E.D., Niinemets U., Reich P.B., Sellin A., Shipley B., Wright I.J. 2007 – “Diminishing returns” in the scaling of functional leaf traits across and within species groups – Proc. Nati. Acad. Sci. USA 104: 8891–8896.
  • Ogawa K. 2008 – The leaf mass/number tradeoff of Kleiman and Aarssen implies constancy of leaf biomass, its density and carbon uptake in forest stands: scaling up from shoot to stand level – J. Ecol. 96: 188–191.
  • Osada N., Tateno R., Mori A., Takeda H. 2004 – Changes in crown development patterns and current-year shoot structure with light environment and tree height in Fagus crenata (Fagaceae) – Am. J. Bot. 91: 1981–1989.
  • Osawa A., Kurachi N. 2004 – Spatial leaf distribution and self-thinning exponent of Pinus banksiana and Populus tremuloides – TreesStruct. Funct. 18: 327–338.
  • Parkhurst D.F., Loucks O.L. 1972 – Optimal leaf size in relation to environment – J. Ecol. 60: 505–537.
  • Pearcy R.W., Muraoka H., Valladares F. 2005 – Crown architecture in sun and shade environments: assessing function and tradeoffs with a three-dimensional simulation model – New Phytol. 166: 791–800.
  • Poorter L., Bongers L., Bongers F. 2006 – Architecture of 54 moist-forest tree species: Traits, trade-offs, and functional groups – Ecology, 87: 1289–1301.
  • Preston K.A., Ackerly D.D. 2003 – Hydraulic architecture and the evolution of shoot allometry in contrasting climates – Am. J. Bot. 90: 1502–1512.
  • Price C.A., Enquist B.J. 2007 – Scaling mass and morphology in leaves: an extension of the WBE model – Ecology, 88: 1132–1141.
  • Reich P.B., Ellsworth D.S., Walters M.B., Vose J.M., Gresham C., Volin J.C., Bowman W.D. 1999 – Generality of leaf trait relationships: a test across six biomes – Ecology, 80: 1955–1969.
  • Reich A., Holbrook N.M., Ewel J.J. 2004 – Developmental and physiological correlates of leaf size in Hyeronima alchorneoides (Euphorbiaceae) – Am. J. Bot. 91: 582–589.
  • Reich P.B., Wright I.J., Lusk C.H. 2007 – Predicting leaf physiology from simple plant and climate attributes: A global GLOPNET analysis – Ecol. Appl. 17: 1982–1988.
  • Seino T. 2001 – Differences in architecture and shoot growth during stagnant and extension growth phases of Acanthopanax sciadophylloides (Araliaceae) – Ann. Bot. 87: 347–354.
  • Shipley B., Lechowicz M.J., Wright I., Reich P.B. 2006 – Fundamental trade-offs generating the worldwide leaf economics spectrum – Ecology, 87: 535–541.
  • Smith W.K. 1978 – Temperatures of desert plants: another perspective on the adaptability of leaf size – Science, 201: 614–616.
  • Smith W.K., Nobel P.S. 1977 – Influences of seasonal changes in leaf morphology on wateruse efficiency for three desert broadleaf shrubs – Ecology, 58: 1033–1043.
  • Sun S.C., Jin D.M., Shi P.L. 2006 – The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship – Ann. Bot. 97: 97–107.
  • Valladares F., Wright S.J., Lasso E., Kitajima K., Pearcy R.W. 2000 – Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest – Ecology, 81: 1925–1936.
  • Walter A., Schurr U. 2005 – Dynamics of leaf and root growth: endogenous control versus environmental impact – Ann. Bot. 95: 891–900.
  • Warton D.I., Wright I.J., Falster D.S., Westoby M. 2006 – Bivariate line-fitting methods for allometry – Biol. Rev. 81: 259–291.
  • Westoby M., Wright I.J. 2003 – The leaf size - twig size spectrum and its relationship to other important spectra of variation among species – Oecologia, 135: 621–628.
  • Woodward F.I. 1987 – Climate and plant distribution – Cambridge University Press, 174 pp.
  • Woodward F.I., Lomas M.R., Kelly C.K. 2004 – Global climate and the distribution of plant biomes – Philos. Trans. R. Soc. Lond B Biol Sci. 359: 1465–1476.
  • Wright I.J., Westoby M., Reich P.B. 2002 – Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span – J. Ecol. 90: 534–543.
  • Yagi T. 2004 – Within-tree variations in shoot differentiation patterns of 10 tall tree species in a Japanese cool-temperate forest – Can. J. Bot. 82: 228–243.
  • Yagi T. 2006 – Relationships between shoot size and branching patterns in 10 broad-leaved tall tree species in a Japanese cool-temperate forest – Can. J. Bot. 84: 1894–1907.
  • Yagi T., Kikuzawa K. 1999 – Paterns in sizerelated variations in current-year shoot structure in eight deciduous tree species – J. Plant Res. 112: 343–352.
  • Zhao C.M., Wang G.X., Wei X.P., Deng J.M., Cheng D.L. 2007 – Effects of groundwater depth variation on photosynthesis and photoprotection of Elaeagnus angustifolia L – Trees - Struct. Funct. 21: 55–63.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-0b82e737-5ed5-4e1a-b1ca-6db18c86790c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.