PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 50 | 4 |

Tytuł artykułu

Photoreceptor guanylate cyclase variants: cGMP production under control

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Changes in the Ca2+ concentration are thought to affect many processes, including signal transduction in a vast number of biological systems. However, only in few cases the molecular mechanisms by which Ca2+ mediates its action are as well understood as in phototransduction. In dark-adapted photoreceptor cells, the equilibrium level of cGMP is maintained by two opposing activities, such as phosphodiesterase (PDE) and guanylate cyclase (GC). Upon absorption of photons, rhodopsin-G-protein- mediated activation of PDE leads to a transient decrease in [cGMP] and subsequently to lowering of [Ca2+]. In turn, lower [Ca2+] increases net production of cGMP by stimulation of GC until dark conditions are re-established. This activation of GC is mediated by Ca2+-free forms of Ca2+-binding proteins termed GC-activating proteins (GCAPs). The last decade brought the molecular identification of GCs and GCAPs in the visual system. Recent efforts have been directed toward understanding the properties of GC at the physiological and structural levels. Here, we summarize the recent progress and present a list of topics of ongoing research.

Wydawca

-

Rocznik

Tom

50

Numer

4

Opis fizyczny

p.1075-1095,fig.,ref.

Twórcy

autor
  • University of Washington, Seattle, WA 98195, USA
autor

Bibliografia

  • Ames JB, Tanaka T, Stryer L, Ikura M. (1994) Secondary structure of myristoylated recoverin determined by three- dimensional heteronuclear NMR: implications for the calcium-myristoyl switch. Biochemistry..; 33: 10743-53.
  • Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M. (1997) Molecular mechanics of calcium-myristoyl switches. Nature.; 389: 198-202.
  • Ames JB, Dizhoor AM, Ikura M, Palczewski K, Stryer L. (1999) Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases. J Biol Chem.; 274: 19329-37.
  • Aparicio JG, Applebury ML. (1996) The photoreceptor guanylate cyclase is an autophosphorylating protein kinase. J Biol Chem.; 271: 27083-9.
  • Arshavsky VY, Lamb TD, Pugh EN, Jr. (2002) G proteins and phototransduction. Annu Rev Physiol. ; 64: 153-87.
  • Bakre MM, Ghanekar Y, Visweswariah SS. (2000) Homologous desensitization of the human guanylate cyclase C receptor. Cell-specific regulation of catalytic activity. Eur J Biochem.; 267: 179-87.
  • Baude EJ, Arora VK, Yu S, Garbers DL, Wedel BJ. (1997) The cloning of a Caenorhabditis elegans guanylyl cyclase and the construction of a ligand-sensitive mammalian/nematode chimeric receptor. J Biol Chem.; 272: 16035-9.
  • Baylor DA, Burns ME. (1998) Control of rhodopsin activity in vision. Eye.; 12 (Pt 3b): 521-5.
  • Bourne Y, Dannenberg J, Pollmann V, Marchot P, Pongs O. (2001) Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J Biol Chem. ; 276: 11949-55.
  • Bownds D, Brodie AE. (1975) Light-sensitive swelling of isolated frog rod outer segments as an in vitro assay for visual transduction and dark adaptation. J Gen Physiol.; 66: 407-25.
  • Bryan PM, Potter LR. (2002) The atrial natriuretic peptide receptor (NPR-A/GC-A) is dephosphorylated by distinct microcystin-sensitive and magnesium-dependent protein phosphatases. J Biol Chem.; 277: 16041-7.
  • Chinkers M, Garbers DL. (1989) The protein kinase domain of the ANP receptor is required for signaling. Science.; 245: 1392-4.
  • Chinkers M, Wilson EM. (1992) Ligand-independent oligomerization of natriuretic peptide receptors. Identification of heteromeric receptors and a dominant negative mutant. J Biol Chem.; 267: 18589-97.
  • De Lean A, McNicoll N, Labrecque J. (2003) Natriuretic peptide receptor A activation stabilizes a membrane-distal dimer interface. J Biol Chem.; 278: 11159-66.
  • Deshmane SP, Parkinson SJ, Crupper SS, Robertson DC, Schulz S, Waldman SA. (1997) Cytoplasmic domains mediate the ligand-induced affinity shift of guanylyl cyclase C. Biochemistry.; 36: 12921-9.
  • Dizhoor AM. (2000) Regulation of cGMP synthesis in photoreceptors: role in signal transduction and congenital diseases of the retina. Cell Signal.; 12: 711-9.
  • Dizhoor AM, Lowe DG, Olshevskaya EV, Laura RP, Hurley JB. (1994) The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron.; 12: 1345-52.
  • Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, Hurley JB. (1995) Cloning, sequencing, and expression of a 24-kDa Ca2+-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem.; 270: 25200-6.
  • Dizhoor AM, Boikov SG, Olshevskaya EV. (1998) Constitutive activation of photoreceptor guanylate cyclase by Y99C mutant of GCAP-1. Possible role in causing human autosomal dominant cone degeneration. J Biol Chem.; 273: 17311-4.
  • Drewett JG, Garbers DL. (1994) The family of guanylyl cyclase receptors and their ligands. Endocr Rev.; 15: 135-62.
  • Duda T, Koch KW. (2002) Retinal diseases linked with photoreceptor guanylate cyclase. Mol CellBiochem.; 230: 129-38.
  • Duda T, Goraczniak R, Surgucheva I, Rudnicka-Nawrot M, Gorczyca WA, Palczewski K, Sitaramayya A, Baehr W, Sharma RK. (1996) Calcium modulation of bovine photoreceptor guanylate cyclase. Biochemistry.; 35: 8478-82.
  • Duda T, Koch KW, Venkataraman V, Lange C, Beyermann M, Sharma RK. (2002) Ca2+ sensor S100beta-modulated sites of membrane guanylate cyclase in the photoreceptor-bipolar synapse. EMBO J.; 21: 2547-56.
  • Fain GL, Matthews HR, Cornwall MC, Koutalos Y. (2001) Adaptation in vertebrate photoreceptors. Physiol Rev. ; 81: 117-51.
  • Fesenko EE, Kolesnikov SS, Lyubarsky AL. (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature.; 313: 310-13.
  • Filipek S, Stenkamp RE, Teller DC, Palczewski K. (2003) G protein-coupled receptor rhodopsin: A prospectus. Annu Rev Physiol.; 65: 851-79.
  • Flaherty KM, Zozulya S, Stryer L, McKay DB. (1993) Three-dimensional structure of recoverin, a calcium sensor in vision. Cell.; 75: 709-16.
  • Frank RN, Buzney SM. (1975) Mechanism and specificity of rhodopsin phosphorylation. Biochemistry.; 14: 5110-7.
  • Fulle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL. (1995) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci USA.; 92: 3571-5.
  • Garbers DL. (1989) Guanylate cyclase, a cell surface receptor. J Biol Chem.; 264: 9103-6.
  • Gorczyca WA, Gray-Keller MP, Detwiler PB, Palczewski K. (1994) Purification and physiological evaluation of a guanylate cyclase activating protein from retinal rods. Proc Natl Acad Sci U S A.; 91: 4014-8.
  • Gorczyca WA, Polans AS, Surgucheva IG, Subbaraya I, Baehr W, Palczewski K. (1995) Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction. J Biol Chem.; 270: 22029-36.
  • Gorczyca WA, Kobiałka M, Kuropatwa M, Kurowska E. (2003) Ca2+ differently affects hydrophobic properties of guanylyl cyclase-activating proteins. (GCAPs) and recoverin. Acta Biochim Polon.; 50: 367-76.
  • Haeseleer F, Imanishi Y, Sokal I, Filipek S, Palczewski K. (2002) Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. Biochem Biophys Res Commun.; 290: 615-23.
  • Haeseleer F, Sokal I, Li N, Pettenati M, Rao N, Bronson D, Wechter R, Baehr W, Palczewski K. (1999) Molecular characterization of a third member of the guanylyl cyclase-activating protein subfamily. J Biol Chem.; 274: 6526-35.
  • He X, Chow D, Martick MM, Garcia KC. (2001) Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science.; 293: 1657-62.
  • Heck M, Hofmann KP. (2001) Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation: initial rate analysis based on a double displacement mechanism. J Biol Chem.; 276: 10000-9.
  • Howes KA, Pennesi ME, Sokal I, Church-Kopish J, Schmidt B, Margolis D, Frederick JM, Rieke F, Palczewski K, Wu SM, Detwiler PB, Baehr W. (2002) GCAP1 rescues rod photoreceptor response in GCAP1/GCAP2 knockout mice. EMBO J; 21: 1545-54.
  • Hughes RE, Brzovic PS, Klevit RE, Hurley JB. (1995) Calcium-dependent solvation of the myristoyl group of recoverin. Biochemistry.; 34: 11410-6.
  • Hurley JH. (1998) The adenylyl and guanylyl cyclase superfamily. Curr Opin Struct Biol.; 8: 770-7.
  • Hurley JB, Dizhoor AM. (2000) Heterologous expression and assays for photoreceptor guanylyl cyclases and guanylyl cyclase activating proteins. Methods Enzymol.; 315: 708-17.
  • Hwang JY, Koch KW. (2002a) Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2. Biochemistry.; 41: 13021-8.
  • Hwang JY, Koch KW. (2002b) The myristoylation of the neuronal Ca2+-sensors guanylate cyclase-activating protein 1 and 2. Biochim Biophys Acta.; 1600: 111-7.
  • Imanishi Y, Li N, Sokal I, Sowa ME, Lichtarge O, Wensel TG, Saperstein DA, Baehr W, Palczewski K. (2002) Characterization of retinal guanylate cyclase-activating protein 3. (GCAP3) from zebrafish to man. Eur J Neurosci.; 15: 63-78.
  • Juilfs DM, Fulle HJ, Zhao AZ, Houslay MD, Garbers DL, Beavo, JA. (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci US A.; 94: 3388-95.
  • Kobialka M, Gorczyca WA. (2000) Particulate guanylyl cyclases: multiple mechanisms of activation. Acta Biochim Polon.; 47: 517-28.
  • Koch KW. (2002) Target recognition of guanylate cyclase by guanylate cyclase-activating proteins. Adv Exp Med Biol.; 514: 349-60.
  • Koch KW, Duda T, Sharma RK. (2002) Photoreceptor specific guanylate cyclases in vertebrate phototransduction. Mol Cell Biochem.; 230: 97-106.
  • Koch KW, Eckstein F, Stryer L. (1990) Stereochemical course of the reaction catalyzed by guanylate cyclase from bovine retinal rod outer segments. J Biol Chem.; 265: 9659-63.
  • Koch KW, Stecher P, Kellner R. (1994) Bovine retinal rod guanyl cyclase represents a new N-glycosylated subtype of membrane-bound guanyl cyclases. Eur J Biochem.; 222: 589-95.
  • Koch KW, Stryer L. (1988) Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature.; 334: 64-6.
  • Kraulis PJ. (1991) JAppl Crystallography.; 946-50.
  • Krylov DM, Niemi GA, Dizhoor AM, Hurley JB. (1999) Mapping sites in guanylyl cyclase activating protein-1 required for regulation of photoreceptor membrane guanylyl cyclases. J Biol Chem.; 274: 10833-9.
  • Kuhn H, Bader S. (1976) The rate of rhodopsin phosphorylation in isolated rentinas of frog and cattle. Biochim Biophys Acta.; 428: 13-8.
  • Kuhn H, Dreyer WJ. (1972) Light dependent phosphorylation of rhodopsin by ATP. FEBSLett.; 20: 1-6.
  • Kuhn H, Hall SW, Wilden U. (1984) Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett. ; 176: 473-8.
  • Kumakura K, Battaini F, Hofmann M, Spano PF, Trabucchi M. (1978) Inhibitory effects of cyclic-AMP dependent protein kinase on guanylate cyclase activity in rat cerebellum. FEBS Lett. ; 93: 231-4.
  • Laura RP, Dizhoor AM, Hurley JB. (1996) The membrane guanylyl cyclase, retinal guanylyl cyclase-1, is activated through its intracellular domain. J Biol Chem.; 271: 11646-51.
  • Leskov IB, Klenchin VA, Handy JW, Whitlock GG, Govardovskii VI, Bownds MD, Lamb TD, Pugh EN, Jr, Arshavsky VY. (2000) The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements. Neuron.; 27: 525-37.
  • Li N, Sokal I, Bronson JD, Palczewski K, Baehr W. (2001) Identification of functional regions of guanylate cyclase- activating protein 1. (GCAP1) using GCAP1/GCIP chimeras. Biol Chem.; 382: 1179-88.
  • Lolley RN, Racz E. (1982) Calcium modulation of cyclic GMP synthesis in rat visual cells. Vision Res.; 22: 1481-6.
  • Lowe DG, Dizhoor AM, Liu K, Gu Q, Spencer M, Laura R, Lu L, Hurley JB. (1995) Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc Natl Acad Sci U S A.; 92: 5535-9.
  • Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA. (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev.; 52: 375-414.
  • Maeda T, Imanishi Y, Palczewski K. (2003) Rhodopsin phosphorylation: 30 years later. Prog Retin Eye Res.; 22: 417-34.
  • Marchese A, Nguyen T, Malik P, Xu S, Cheng R, Xie Z, Heng HH, George SR, Kolakowski LF, Jr, O'Dowd BF. (1998) Cloning genes encoding receptors related to chemoattractant receptors. Genomics.; 50: 281-6.
  • Margulis A, Goraczniak RM, Duda T, Sharma RK, Sitaramayya A. (1993) Structural and biochemical identity of retinal rod outer segment membrane guanylate cyclase. Biochem Biophys Res Commun.; 194: 855-61.
  • Margulis A, Pozdnyakov N, Sitaramayya A. (1996) Activation of bovine photoreceptor guanylate cyclase by S100 proteins. Biochem Biophys Res Commun.; 218: 243-7.
  • Mendez A, Burns ME, Sokal I, Dizhoor AM, Baehr W, Palczewski K, Baylor DA, Chen J. (2001) Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc Natl Acad Sci US A.; 98: 9948-53.
  • Merritt EA, Bacon JD. (1997) Raster3D photorealistic molecular graphics''. Methods in Enzymology.; 277: 505-24.
  • Miller JA, Brodie AE, Bownds MD. (1975) Light-activated rhodopsin phosphorylation may control light sensitivity in isolated rod outer segments. FEBSLett.; 59: 20-3.
  • Misono KS. (2000) Atrial natriuretic factor binding to its receptor is dependent on chloride concentration: A possible feedback-control mechanism in renal salt regulation. Circ Res.; 86: 1135-9.
  • Newbold RJ, Deery EC, Payne AM, Wilkie SE, Hunt DM, Warren MJ. (2002) Guanylate cyclase activating proteins, guanylate cyclase and disease. Adv Exp Med Biol.; 514: 411-38.
  • Okada T, Ernst OP, Palczewski K, Hofmann KP. (2001) Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci.; 26: 318-24.
  • Olshevskaya EV, Hughes, RE, Hurley JB, Dizhoor AM. (1997) Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J Biol Chem.; 272: 14327-33.
  • Olshevskaya EV, Ennilov AN, Dizhoor AM. (2002) Factors that affect regulation of cGMP synthesis in vertebrate photoreceptors and their genetic link to human retinal degeneration. Mol Cell Biochem.; 230: 139-47.
  • Otto-Bruc A, Buczylko J, Surgucheva I, Subbaraya I, Rudnicka-Nawrot M, Crabb JW, Arendt A, Hargrave PA, Baehr W, Palczewski K. (1997) Functional reconstitution of photoreceptor guanylate cyclase with native and mutant forms of guanylate cyclase-activating protein 1. Biochemistry.; 36: 4295-302.
  • Palczewski K. (1997) GTP-binding-protein-coupled receptor kinases — two mechanistic models. Eur J Biochem.; 248: 261-9.
  • Palczewski K, Benovic JL. (1991) G-protein-coupled receptor kinases. Trends Biochem Sci.; 16: 387-91.
  • Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, Huang J, Zhao X, Crabb JW, Johnson RS, et al. (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron.; 13: 395-404.
  • Palczewski K, Polans AS, Baehr W, Ames JB. (2000) Ca2+-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioessays.; 22: 337-50.
  • Payne AM, Downes SM, Bessant DA, Plant C, Moore T, Bird AC, Bhattacharya SS. (1999) Genetic analysis of the guanylate cyclase activator 1B. (GUCA1B) gene in patients with autosomal dominant retinal dystrophies. J Med Genet.; 36: 691-3.
  • Payne AM, Downes SM, Bessant DA, Taylor R, Holder GE, Warren MJ, Bird AC, Bhattacharya SS. (1998) A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p211. Hum Mol Genet.; 7: 273-7.
  • Pennesi ME, Howes KA, Baehr W, Wu SM. (2003) Guanylate cyclase-activating protein. (GCAP) 1 rescues cone recovery kinetics in GCAP1/GCAP2 knockout mice. Proc Natl Acad Sci U S A.; 100: 6783-8.
  • Perrault I, Rozet JM, Calvas P, Gerber S, Camuzat A, Dollfus H, Chatelin S, Souied E, Ghazi I, Leowski C, Bonnemaison M, Le Paslier D, Frezal J, Dufier JL, Pittler S, Munnich A, Kaplan J. (1996) Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis. Nat Genet.; 14: 461-4.
  • Perrault I, Rozet JM, Gerber S, Kelsell RE, Souied E, Cabot A, Hunt DM, Munnich A, Kaplan J. (1998) A retGC-1 mutation in autosomal dominant cone-rod dystrophy. Am J Hum Genet.; 63: 651-4.
  • Perrault I, Rozet JM, Gerber S, Ghazi I, Leowski C, Ducroq D, Souied E, Dufier JL, Munnich A, Kaplan J. (1999) Leber congenital amaurosis. Mol GenetMetab.; 68: 200-8.
  • Polans A, Baehr W, Palczewski K. (1996) Turned on by Ca2+! The physiology and pathology of Ca2+-binding proteins in the retina. Trends Neurosci.; 19: 547-54.
  • Potter LR. (1998) Phosphorylation-dependent regulation of the guanylyl cyclase-linked natriuretic peptide receptor B: dephosphorylation is a mechanism of desensitization. Biochemistry.; 37: 2422-9.
  • Potter LR, Hunter T. (1998a) Identification and characterization of the major phosphorylation sites of the B-type natriuretic peptide receptor. J Biol Chem.; 273: 15533-9.
  • Potter LR, Hunter T. (1998b) Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor. Mol Cell Biol.; 18: 2164-72.
  • Potter LR, Hunter T. (1999) A constitutively "phosphorylated" guanylyl cyclase-linked atrial natriuretic peptide receptor mutant is resistant to desensitization. Mol Biol Cell.; 10: 1811-20.
  • Potter LR, Hunter T. (2001) Guanylyl cyclase-linked natriuretic peptide receptors: structure and regulation. J Biol Chem. ; 276: 6057-60.
  • Pugh EN Jr, Duda T, Sitaramayya A, Sharma RK. (1997) Photoreceptor guanylate cyclases: a review. Biosci Rep.; 17: 429-73.
  • Pugh EN Jr, Nikonov S, Lamb TD. (1999) Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr Opin Neurobiol.; 9: 410-8.
  • Ridge KD, Abdulaev NG, Sousa M, Palczewski K. (2003) Phototransduction: crystal clear. Trends Biochem Sci.; 28: 479-87.
  • Rondeau JJ, McNicoll N, Gagnon J, Bouchard N, Ong H, De Lean A. (1995) Stoichiometry of the atrial natriuretic factor- R1 receptor complex in the bovine zona glomerulosa. Biochemistry.; 34: 2130-6.
  • Rudnicka-Nawrot M, Surgucheva I, Hulmes JD, Haeseleer F, Sokal I, Crabb JW, Baehr W, Palczewski K. (1998) Changes in biological activity and folding of guanylate cyclase-activating protein 1 as a function of calcium. Biochemistry.; 37: 248-57.
  • Sayle RA, Milner-White EJ. (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci.; 20: 374.
  • Schrem A, Lange C, Beyermann M, Koch KW. (1999) Identification of a domain in guanylyl cyclase-activating protein 1 that interacts with a complex of guanylyl cyclase and tubulin in photoreceptors. J Biol Chem.; 274: 6244-9.
  • Schulz S, Wedel BJ, Matthews A, Garbers DL. (1998) The cloning and expression of a new guanylyl cyclase orphan receptor. J Biol Chem. ; 273: 1032-7.
  • Scott RO, Thelin WR, Milgram SL. (2002) A novel PDZ protein regulates the activity of guanylyl cyclase C, the heat- stable enterotoxin receptor. J Biol Chem.; 277: 22934-41.
  • Sefton BM. (1989) Protein kinases. Cancer Cells.; 1: 64-5.
  • Semple-Rowland SL, Lee NR, Van Hooser JP, Palczewski K, Baehr W. (1998) A null mutation in the photoreceptor guanylate cyclase gene causes the retinal degeneration chicken phenotype. Proc Natl Acad Sci U S A.; 95: 1271-6.
  • Shyjan AW, de Sauvage FJ, Gillett NA, Goeddel DV, Lowe DG. (1992) Molecular cloning of a retina-specific membrane guanylyl cyclase. Neuron.; 9: 727-37.
  • Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang WJ, Dangott LJ, Chinkers M, Goeddel DV, Garbers DL. (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature.; 334: 708-12.
  • Sitaramayya A, Pozdnyakov N, Margulis A, Yoshida A. (2000) Calcium-dependent activation of membrane guanylate cyclase by S100 proteins. Methods Enzymol.; 315: 730-42.
  • Skiba NP, Hamm HE. (1998) How Gsalpha activates adenylyl cyclase. Nat Struct Biol.; 5: 88-92.
  • Soderling SH, Beavo JA. (2000) Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol.; 12: 174-9.
  • Sokal I, Alekseev A, Baehr W, Haeseleer F, Palczewski K. (2002) Soluble fusion proteins between single transmembrane photoreceptor guanylyl cyclases and their activators. Biochemistry.; 41: 251-7.
  • Sokal I, Haeseleer F, Arendt A, Adman ET, Hargrave PA, Palczewski K. (1999a) Identification of a guanylyl cyclase- activating protein-binding site within the catalytic domain of retinal guanylyl cyclase 1. Biochemistry.; 38: 1387-93.
  • Sokal I, Li N, Klug CS, Filipek S, Hubbell WL, Baehr W, Palczewski K. (2001) Calcium-sensitive regions of GCAP1 as observed by chemical modifications, fluorescence, and EPR spectroscopies. J Biol Chem.; 276: 43361-73.
  • Sokal I, Li N, Surgucheva I, Warren MJ, Payne AM, Bhattacharya SS, Baehr W, Palczewski K. (1998) GCAP1. (Y99C) mutant is constitutively active in autosomal dominant cone dystrophy. Mol Cell.; 2: 129-33.
  • Sokal I, Li N, Verlinde CL, Haeseleer F, Baehr W, Palczewski K. (2000) Ca2+-binding proteins in the retina: from discovery to etiology of human disease(1). Biochim Biophys Acta.; 1498: 233-51.
  • Sokal I, Otto-Bruc AE, Surgucheva I, Verlinde CL, Wang CK, Baehr W, Palczewski K. (1999b) Conformational changes in guanylyl cyclase-activating protein 1 (GCAP1) and its tryptophan mutants as a function of calcium concentration. J Biol Chem.; 274: 19829-37.
  • Stryer L. (1983) Transducin and the cyclic GMP phosphodiesterase: amplifier proteins in vision. Cold Spring Harb Symp Quant Biol.; 48 Pt 2: 841-52.
  • Sunahara RK, Beuve A, Tesmer JJ, Sprang SR, Garbers DL, Gilman AG. (1998) Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases. J Biol Chem.; 273: 16332-8.
  • Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR. (1997) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with GsalphaGTPgammaS. Science.; 278: 1907-16.
  • Thompson DK, Garbers DL. (1995) Dominant negative mutations of the guanylyl cyclase-A receptor. Extracellular domain deletion and catalytic domain point mutations. J Biol Chem.; 270: 425-30.
  • Thorpe DS, Niu S, Morkin E. (1991) Overexpression of dimeric guanylyl cyclase cores of an atrial natriuretic peptide receptor. Biochem Biophys Res Commun.; 180: 538-44.
  • Tucker CL, Hurley JH, Miller TR, Hurley JB. (1998) Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. Proc Natl Acad Sci U S A.; 95: 5993-7.
  • van den Akker F, Zhang X, Miyagi M, Huo X, Misono KS, Yee VC. (2000) Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature.; 406: 101-4.
  • Venkataraman V, Nagele R, Duda T, Sharma RK. (2000) Rod outer segment membrane guanylate cyclase type 1-linked stimulatory and inhibitory calcium signaling systems in the pineal gland: biochemical, molecular, and immunohistochemical evidence. Biochemistry.; 39: 6042-52.
  • Vijay-Kumar S, Kumar VD. (1999) Crystal structure of recombinant bovine neurocalcin. Nat Struct Biol.; 6: 80-8.
  • Wada A, Hasegawa M, Matsumoto K, Niidome T, Kawano Y, Hidaka Y, Padilla PI, Kurazono H, Shimonishi Y, Hirayama T. (1996) The significance of Ser1029 of the heat-stable enterotoxin receptor. (STaR): relation of STa-mediated guanylyl cyclase activation and signaling by phorbol myristate acetate. FEBS Lett.; 384: 75-7.
  • Wilden U, Hall SW, Kuhn H. (1986) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A.; 83: 1174-8.
  • Wilson EM, Chinkers M. (1995) Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry.; 34: 4696-701.
  • Wolbring G, Schnetkamp PP. (1995) Activation by PKC of the Ca2+-sensitive guanylyl cyclase in bovine retinal rod outer segments measured with an optical assay. Biochemistry.; 34: 4689-95.
  • Wong SK, Garbers, DL. (1992) Receptor guanylyl cyclases. J Clin Invest.; 90: 299-305.
  • Yang RB, Foster DC, Garbers DL, Fulle HJ. (1995) Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci U S A.; 92: 602-6.
  • Yang RB, Garbers DL. (1997) Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem. ; 272: 13738-42.
  • Yang RB, Robinson SW, Xiong WH, Yau KW, Birch DG, Garbers DL. (1999) Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci.; 19: 5889-97.
  • Yau KW, Baylor DA. (1989) Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu Rev Neurosci. ; 12: 289-327.
  • Yu S, Avery L, Baude E, Garbers DL. (1997) Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc Natl Acad Sci US A.; 94: 3384-7.
  • Zhang G, Liu Y, Ruoho AE, Hurley JH. (1997) Structure of the adenylyl cyclase catalytic core. Nature.; 386: 247-53.
  • Zozulya S, Stryer L. (1992) Calcium-myristoyl protein switch. Proc Natl Acad Sci U S A.; 89: 11569-73.
  • Zwiller J, Revel MO, Basset P. (1981) Evidence for phosphorylation of rat brain guanylate cyclase by cyclic AMP- dependent protein kinase. Biochem Biophys Res Commun.; 101: 1381-7.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-07dc9a8b-7ba9-43fd-bfdb-d1394c293ad0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.