PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 49 | 4 |

Tytuł artykułu

Growth and life habits of the Triassic cynodont Trirachodon, inferred from bone histology

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Growth pattern and lifestyle habits of the Triassic non−mammalian cynodont Trirachodon are deduced from bone histology and cross−sectional geometry. Several skeletal elements of Trirachodon were examined in order to document histological changes during ontogeny, as well as histovariability in the skeleton. The bone histology of all the elements consists of a moderately vascularized, periodically interrupted, fibro−lamellar bone tissue. This suggests that the overall growth of Trirachodon was probably rapid during the favourable season, but decreased or ceased during the unfavourable season. As the environment is thought to have been semi−arid with seasonal rainfall, it is possible that Trirachodon was sensitive to such environmental fluctuations. Some inter−elemental histovariability was noted where the number and prominence of growth rings varied. Limb bone cross−sectional geometry revealed a relatively thick bone wall and supports earlier proposals that Trirachodon was fossorial.

Wydawca

-

Rocznik

Tom

49

Numer

4

Opis fizyczny

p.619-627,fig.,ref.

Twórcy

autor
  • South African Museum, Iziko Museums of Cape Town, P.O.Box 61, 8000, South Africa
autor

Bibliografia

  • Amprino, R. 1947. La structure du tissu osseux envisagée comme expression de différences dans la vitesse de l’accroissement. Archives de Biologie 58: 315–330.
  • Botha, J. and Chinsamy, A. 2000. Growth patterns from the bone histology of the cynodonts Diademodon and Cynognathus. Journal of Vertebrate Paleontology 20: 705–711.
  • Bou, J., Castiella, M.J.,Ocana, J., and Casinos, A. 1990. Multivariate analysis and locomotor morphology in insectivores and rodents. Zoologischer Anzeiger 225: 287–294.
  • Bühler, P. 1986. Das Vogelskellet−hochentwickelter Knochen−leichtbau. Arcus 5: 221–228.
  • Carrier, D.R. 1987. The evolution of locomotor stamina in tetrapods: Circumventing a mechanical constraint. Paleobiology 13: 326–341.
  • Casinos, A., Quintana, C., and Viladiu, C. 1993. Allometry and adaptation in the long bones of a digging group of rodents (Ctenomyinae). Zoological Journal of the Linnean Society 107: 107–115.
  • Chinsamy, A. 1990. Physiological implications of the bone histology of Syntarsus rhodesiensis(Saurischia: Theropoda).Palaeontologia Africana 27: 77–82.
  • Chinsamy, A. 1991. The Osteohistology of Femoral Growth within a Clade: A Comparison of the Crocodile Crocodylus, the Dinosaurs Massospondylus and Syntarsus, and the Birds Struthio and Sagittarius. 200 pp. Ph.D. dissertation, University of Witwatersrand, Johannesburg.
  • Chinsamy, A. 1993a. Bone histology and growth trajectory of the prosauropod dinosaur Massospondylus carinatus Owen. Modern Geology 18: 319–329.
  • Chinsamy, A. 1993b. Image analysis and the physiological implications of the vascularisation of femora in archosaurs. Modern Geology 19: 101–108.
  • Chinsamy, A. 1995. Ontogenetic changes in the bone histology of the Late Jurassic ornithopod Dryosaurus lettowvorbecki. Journal of Vertebrate Paleontology 15 (1): 96–104.
  • Chinsamy, A. 1997. Assessing the biology of fossil vertebrates through bone histology. Palaeontologia Africana 33: 29–35.
  • Chinsamy, A. and Raath, M.A. 1992. Preparation of fossil bone for histological examination. Palaeontologia Africana 29: 39–44.
  • Crompton, A.W. and Ellenberger, F. 1957. On a new cynodont from Molteno Beds and origin of tritylodontids. Annals of the South African Museum 44: 1–14.
  • Currey, J.D. 1960. Differences in the blood−supply of bone of different histological types. Quarterly Journal of Microscopical Science 101 (3): 351–370.
  • Curry, K.A. 1999. Ontogenetic histology of Apatosaurus (Dinosauria: Sauropoda): New insights on growth rates and longevity. Journal of Vertebrate Paleontology 19 (4): 654–665.
  • Enlow, D.H. and Brown, S.O. 1956. A comparative histological study of fossil and recent bone tissues. Part I. The Texas Journal of Science 8: 405–443.
  • Enlow, D.H. and Brown, S.O. 1957. A comparative histological study of fossil and recent bone tissues. Part II. The Texas Journal of Science 9: 136–214.
  • Fish, F.E. 1993. Comparison of swimming kinematics between terrestrial and semiaquatic opossums. Journal of Mammalogy 74 (2): 275–284.
  • Francillon−Vieillot, H., de Buffrénil, V., Castanet, J., Geraudie, J., Meunier, F.J., Sire, J.Y., Zylberberg, L., and de Ricqlès, A. 1990. Microstructure and mineralization of vertebrate skeletal tissues.In: J.G. Carter (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, 471–548. Van Nostrand Reinhold, New York.
  • Groenewald, G.H., Welman, J., and MacEachern, J.A. 2001. Vertebrate burrow complexes from the Early Triassic Cynognathus Zone (Driekoppen Formation, Beaufort Group) of the Karoo Basin, South Africa. Palaios 16: 148–160.
  • Horner, J.R., de Ricqlès, A., and Padian, K. 1999. Variation in dinosaur skeletochronology indicators: Implications for age assessment and physiology. Paleobiology 25: 295–304.
  • Horner, J.R, de Ricqlès, A., and Padian, K. 2000. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: Growth dynamics and physiology of an ontogenetic series of skeletal elements. Journal of Vertebrate Paleontology 20: 115–129.
  • Hutton, J.M. 1986. Age determination of living Nile crocodiles from the cortical stratification of bone. Copeia 2: 332–341.
  • Kemp, T.S. 1982. Mammal−like Reptiles and the Origin of Mammals. 363 pp. Academic Press, London.
  • Magwene, P.M. 1993. What’s Bred in the Bone: Histology and Cross−sectional Geometry of Mammal−like Reptile Long Bones−Evidence of Changing Physiological and Biomechanical Demands. 54 pp. M.Sc. dissertation, Harvard University, Cambridge.
  • Margerie, E. de, Cubo, J., and Castanet, J. 2002. Bone typology and growth rate: testing and quantifying “Amprino’s rule” in the mallard (Anas platyrhynchos). Comptes Rendus Biologies 325: 221–230.
  • Pough, F.H., Heiser, J.B., and McFarland, W.N. 1996. Vertebrate Life. 798 pp. Prentice−Hall, New Jersey.
  • Ray, S. and Chinsamy, A. 2004. Diictodon feliceps (Therapsida, Dicynodontia): bone histology, growth and biomechanics. Journal of Vertebrate Paleontology 24: 180–194.
  • Ray, S., Botha, J., and Chinsamy, A. (in press). Bone histology and growth patterns of some nonmammalian therapsids. Journal of Vertebrate Paleontology.
  • Reid, R.E.H. 1990. Zonal “growth rings” in dinosaurs. Modern Geology 15: 19–48.
  • Reid, R.E.H. 1996. Bone histology of the Cleveland−Lloyd dinosaurs and of dinosaurs in general, Part I: Introduction: Introduction to bone tissues. Geology Studies 41: 25–71.
  • Ricqlès, A., de 1969. Recherches paléohistologiques sur les os longs des tétrapodes. II. – Quelques observations sur la structure des os longs des Thériodontes. Annales de Paléontologie (Vertebres) 55 (1): 1–52.
  • Ricqlès, A., de 1972. Recherches paléohistologiques sur les os longs des tétrapodes. III. – Titanosuchiens, Dinocéphales et Dicynodontes. Annales de Paléontologie (Vertebres) 58 (1): 17–60.
  • Ricqlès, A., de 1974. Evolution of endothermy: Histological evidence. Evolutionary Theory 1: 51–80.
  • Ricqlès, A., de 1976. On bone histology of fossil and living reptiles, with comments on its functional and evolutionary significance. In: A. d’A. Bellairs and C.B. Cox (eds.), Morphology and Biology of Reptiles, 123–150. Academic Press, London.
  • Ricqlès, A., de 1980. (ed.) Tissue structures of dinosaur bone. Functional significance and possible relation to dinosaur physiology. In: D.K. Thomas and E.C. Olson (eds.), A Cold Look at the Warm−blooded Dinosaurs, 103–139. Westview Press, Boulder.
  • Ricqlès, A., de, Padian, K., and Horner, J.R. 2001. The bone histology of basal birds in phylogenetic and ontogenetic perspectives. In: J. Gauthier and L.F. Gall (eds.), New Perspectives on the Origin and Early Evolution of birds: Proceedings of the International Symposium in Honor of John H. Ostrom, 411–426. Peabody Museum of Natural History, New Haven.
  • Ricqlès, A., de, Padian, K., Horner, J.R., Lamm, E.−T., and Myhrvold, N. 2003. Osteohistology of Confuciusornis sanctus (Theropoda: Aves). Journal of Vertebrate Paleontology 23: 373–386.
  • Rubidge, B.S. (ed.) 1995. Biostratigraphy of the Beaufort Group (Karoo Supergroup). 46 pp. Council for Geoscience, Pretoria.
  • Rubidge, B.S. and Sidor, C.A. 2001. Evolutionary patterns among Permo−Triassic therapsids. Annual Review of Ecology and Systematics 32: 449–480.
  • Seeley, H.G. 1895a. Researches on the structure, organization and classification of the fossil Reptilia. On Diademdon. Philosophical Transactions of the Royal Society of London B 185: 1029–1041.
  • Seeley, H.G. 1895b. On the structure, organization and classification of the fossil Reptilia III. On Trirachodon. Philosophical Transactions of the Royal Society of London B 186: 48–57.
  • Smith, R. 1987. Helical burrow casts of therapsid origin from the Beaufort Group (Permian) of South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 60: 155–170.
  • Smith, R. and Swart, R. 2002. Changing fluvial environments and vertebrate taphonomy in response to climatic drying in a Mid−Triassic rift valley fill: The Omingonde Formation (Karoo Supergroup) of Central Namibia. Palaios 17 (3): 249–267.
  • Starck, J.M. and Chinsamy, A. 2002. Bone microstructure and developmental plasticity in birds and other dinosaurs. Journal of Morphology 254: 232–246.
  • Stein, B.R. 1989. Bone density and adaptation in semi−aquatic mammals. Journal of Mammalogy 70 (3): 467–476.
  • Wall, W.P. 1983. The correlation between limb−bone density and aquatic habits in recent mammals. Journal of Vertebrate Paleontology 57: 197–207.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-0699e373-f36f-4cc7-9f03-c9fcc38d5894
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.