PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 50 | 6 |

Tytuł artykułu

Roznorodnosc genetyczna z perspektywy poznanych sekwencji genomow roslinnych

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
Genome analyses in model species have provided value in biological research. As it has become clear that coding gene sequences are well conserved among genera and even tribes, comparative mapping makes it possible to transfer the information on chromosome structure and gene organization from species with well-developed genetic maps to species where such information is scarce. Furthermore, genome comparisons on the basis of a well characterized model genome in relation to more complex genomes in crop plants, offer new information about the mechanisms responsible for the evolution of chromosomal structure. Among dicotyledonous plants, A. thaliana plays the role of a model plant, especially for closely related crop species of the genus Brassica (cruciferous oilseeds and a variety of leafy vegetables). The A. thaliana genome project provides an opportunity of systematic and large-scale identification and isolation of Brassica genes, and to a better understanding various aspects of the Brassica biology and, eventually, of its breeding problems. This aspects is demonstrated on an example of the A. thaliana gene families coding for ACC syntases and oxidases, key enzymes in ethylene biosynthesis. Further progress in the analysis of A. thaliana and rice genomes should establish the synteny with many related crop species by means of detailed comparative mapping. This may greatly facilitate gene identification and studies on their organization within the genome.

Wydawca

-

Rocznik

Tom

50

Numer

6

Opis fizyczny

s.59-71,rys.,bibliogr.

Twórcy

autor
  • Uniwersytet im. Adama Mickiewicza, ul.Miedzychodzka 5, 60-371 Poznan
autor
autor
autor
autor

Bibliografia

  • [1] Alexander L., Grierson D. 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53(377): 2039- 2055.
  • [2] Al-Shehbaz I.A. 1973. The biosystematics of the genus Thelypodium (Cruciferae). Contrib. Gray. Herb. Harv. Univ. 204: 3-148.
  • [3] Arumuganathan K., Earle E.D. 1991. Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol. Biol. Rep. 9: 208-218.
  • [4] Babula O., Kaczmarek M., Barakat A., Delseny M., Quiros C.F., Sadowski J. 2003. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: complexity of the comparative map. Mol. Genet Genomics 268: 656-665.
  • [5] Barakat A., Matassi G., Bernardi G. 1998. Distribution of genes in the genome of Arabidopsis thaliana and its implications for the genome organization of plants. Proc. Natl. Acad. Sci. USA 95: 10044-10049.
  • [6] Blanc G., Barakat A., Guyot R., Cooke R., Delseny M. 2000. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12: 1093-1101.
  • [7] Blanc G., Hokamp K., Wolfe K.H. 2003. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13(2): 137-144.
  • [8] Boguski M.S., Lowe T.M., Tolstoshev C.M. 1993. dbEST - database for „expressed sequence tags". Nat. Genet. 4: 332-333.
  • [9] Ching A., Rafalski A. 2002. Rapid genetic mapping of ESTs using SNP pyrosequencing and indel analysis. Cell Mol. Biol. Lett. 7(2B): 803-810.
  • [10] Cooke R., Raynal M., Laudie M., Delseny M. 1997. Identification of members of gene families in Arabidopsis thaliana by contig construction from partial cDNA sequences: 106 genes encoding 50 cytoplasmic ribosomal proteins. Plant J. 11: 1127-1140.
  • [11] Davis G.L., McMullen M.D., Baysdorfer C., Muskel T., Grant D., Houchins K., Chao S., Coe E.H. 1999. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged site ESTs in a 1, 736- locus map. Genetics 152: 1137-1172.
  • [12] Gale M.D., Devos K.M. 1998. Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA 95: 1971-1974.
  • [13] Gebhardt C., Walkemeier B., Henselewski H., Barakat A., Delseny M., Stuber K. 2003. Comparative mapping between potato (Solanum tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome. Plant J. 34(4): 529-541.
  • [14] Goff S.A., Ricke D., Lan T.H., Presting G., Wang R., Dunn M., Glazebrook J., Sessions A., Oeller P., Varma H. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100.
  • [15] Hamilton A.J., Lycett G.W., Grierson D. 1990. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 284-287.
  • [16] Kempin S.A., Savidge B., Yanofsky M.F. 1995. Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267(5197): 522-525.
  • [17] Klee H., Hayford M.. Kretzmer K., Barry G., Kishore G. 1991. Control of ethylene synthesis by expression of a bacterial ACC deaminase in transgenic tomato plants. Plant Cell 3: 1187-1193.
  • [18] Kurata N., Umehera Y., Tanouse H., Sasaki T. 1997. Physical mapping of the rice genome with YAC clones. Plant Mol. Biol. 35: 101-113.
  • [19] Lagercrantz U. 1998. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150: 1217-1228.
  • [20] Lan T.H., DelMonte T.A., Reischmann K.P., Hyman J., Kowalski S.P., Mcferson J., Kresovich S., Paterson A.H. 2000. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res. 10: 776-788.
  • [21] Michalek W., Weschke W., Pleissner K.P., Graner A. 2002. EST analysis in barley defines a unigene set comprising 4,000 genes. Theor. Appl. Genet. 104(1): 97-103.
  • [22] Neupane K.R., Mukatira U.T., Kato C., Stiles J.I. 1998. Cloning and characterization of fruit expressed ACC synthase and ACC oxidasefrom papaya (Carica papaya L.). Acta Horticulturae 461: 329-337.
  • [23] Oeller P.W., Lu M.W., Taylor L.P., Pike D.A., Theologis A. 1991. Reversible inhibition of tomato fruit senescence by antisense RNA. Science 18; 254(5030): 43 7-439.
  • [24] Paterson A.H., Lan T.-H., Amasino R., Osborn T.C., Quiros C. 2001. Brassica genomics: a complement to, and early beneficiary ot: the Arabidopsis sequence. Genome Biology 3: 1011.1-1011.4.
  • [25] Pogson B.J., Downs Ch.G., Davies K.M. 1995. Differential expression of two ACC oxidase genes in broccoli may indicate a role for reproductive structures in senescence. Plant Physiology 108: 651-657.
  • [26] Schenk P.M., Kazan K., Wilson I., Anderson J.P., Richmond T., Somerrville S.C., Manners J.M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microaaray analysis. Proc. Natl. Acad. Sci. USA 97: 11655-11660.
  • [27] Schoen D.J. 2000. Comparative genomics, marker density and statistical analysis of chromosome rearrangements. Genetics 154: 943-952.
  • [28] Somerville C., Dangl L. 2000. Genomics. Plant biology in 2010. Science 290(5499): 2077-2078.
  • [29] The Arabidopsis Genome Initiative 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.
  • [30] Wang K.L.C., Li H., Ecker J.R. 2002. Ethylene biosynthesis and signaling network. The Plant Cell S 131-S 151.
  • [31] Weterings K., Pezzotti M., Cornelissen M., Mariani C. 2002. Dynamic 1-aminocyclopropane-1-carboxylate-synthase and-oxidase transcript accumulation patterns during pollen tube growth in tobacco styles. Plant Physiology 130(3): 1190- 1200.
  • [32] Wilkinson J.Q., Lanahan M.B., Clark D.G., Bleecker A.B., Chang C., Meyerowitz E.M., Klee H.J. 1997. A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nature Biotech. 15: 444-44 7.
  • [33] Yang C.Y., Chu F.H., Wang Y.T., Chen Y.T., Yang S.F., Shaw J.F. 2003. Novel Broccoli 1-Aminocyclopropane-1-carboxylate Oxidase Gene (Bo-ACO3) Associated with the Late Stage of Postharvest Floret Senescence. J. Agric. Food Chem. 51 (9): 2569-2575.
  • [34] Yu J., Hu S., Wang J., Wong G.K., Li S., Liu B., Deng Y., Dai L., Zhou Y., Zhang X., Cao M., Liu J., Sun J., Tang J., Chen Y., Huang X., Lin W. 2002. Draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565): 79-92.
  • [35] Ziółkowski P. A., Blanc G., Sadowski J. 2003. Structural divergence of chromosomal segments that arose from succesive duplication events in the Arabidopsis genome. Nucleic Acids Res. 31: 1339-1350.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-0180c739-144a-4c75-b7a3-31724b663db3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.