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Summary 

In this paper, we discuss the problem of estimation of individual weights of three objects in 
the chemical balance weighing design using the criterion of D-optimality. We assume that the 

sequence iε  of error terms is a first-order autoregressive process, called )1(AR  process. We 

present the  D-optimal chemical balance weighing design X̂  in the class of designs with the 
design matrix )1(3 ±∈ ×nMX  such that each column of the matrix X  contains at least one 1 and 

one –1.  
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1. Introduction 

The formulation to a weighing design problem calls for some objects with 
unknown weights and a weight measuring device is known as a balance. In a 
chemical balance, there are two pans (left and right). Any object can be placed 
on the left or right pan. Then the pointer provides a reading which represents 
the total weight of the objects on the pans. Chemical balance weighing designs 
are also the name for experiments which results can be described as the linear 
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combination of unknown measurements of objects with factors of this combina-
tion equal to 1 or 1− . 

Assume that )4(mod0≡n . There are 3  objects of the true unknown 

weights 321 ,w,ww , respectively, and we wish to estimate them employing n  

measuring operations using a chemical balance. Let nyyy ,,, 21 K  denote the 

observations in these n  operations, respectively. We assume that the observa-
tions follow the linear model   

,εXwy +=  

where T
nyyy ],,,[ 21 K=y  is an 1×n  vector of observations, 

Twww ],,[ 321=w  is the vector of true unknown weights (parameters) of ob-

jects, the matrix 
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is called the design matrix and 1−=ijx  if the jth object is placed on the left pan 

during the ith weighing operation, 1=ijx  if the jth object is placed on the right 

pan during the ith weighing operation, the vector T
n ],,,[ 21 εεε K=ε  is the so-

called vector of error components such that TE ]0,,0,0[)( K=ε  is an 1×n  vec-

tor of zeros and Sε 21

1
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and 11 <<− ρ .  
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To estimate individual unknown weights of objects we use the normal 
equations 

.ˆ 11 ySXwXSX −− = TT  

We say that chemical balance weighing design is singular or nonsingular if 
the matrix XSX 1−T  is singular or nonsingular, respectively. This matrix is called 
the information matrix for the design. If the matrix X  is of full column rank 
(the design is nonsingular), then the generalized least-squares estimator of the 
vector w  is given in the form 

.)(ˆ 111 ySXXSXw −−−= TT  

The covariance matrix of ŵ  is given by the formula 

.)(
1

1
)ˆ( 11

2
−−

−
= XSXw TVar

ρ
 

The inverse of the matrix S is equal to the matrix A21
1
ρ−

 for 

)1,1(−∈ρ , where 
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It is well known from literature (for example Horn and Johnson (1985)) that 
above matrix is positive definite for )1,1(−∈ρ .  

We consider the chemical balance weighing designs which minimize the 
determinant of 11 )( −− XSXT , the inverse of the information matrix XSX 1−T . This 
condition is equivalent to maximizing the determinant of the information ma-
trix. 
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Definition 1.1. We say that the design matrix X̂  is D-optimal in the class 
C  of the designs matrices, where C  is a subset of )1(3 ±×nM , if 

},:)max{det()ˆˆdet( 11 CTT ∈= −− XXSXXSX  

where )1(±×mnM  is the set of all matrices with n  rows, m  columns and each 

element is 1 or 1− . 
Hotelling (1944) studied some problems connected with chemical balance 

weighing designs, when the matrix S was the identity matrix )0( =ρ . He 

proved that the design is optimal if its design matrix X  is such that 

3IXX nT = . For 01 <<− ρ , Li and Yang (2005) have proved that the design 

with the design matrix 
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where elements with indices 2,1  and 3 are in positions 

,3,1
4
3

,3,1
4

,2,1
2








 +






 +






 + nnn  respectively, is D-optimal in the class of de-

signs with the design matrix )1(]||[ 3 ±∈= ×nMux1X , where T]1,,1,1[ K=1 , 
T

nxxx ],,,[ 21 K=x  and T
nuuu ],,,[ 21 K=u . Yeh and Lo Huang (2005) have 

considered similar problems for the complete k2  factorial designs and the pk −2  
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fractional factorial designs also for 10 << ρ  and )4(mod2≡n . The  
D-optimal designs in these two papers are the conjectures from Bora-Senta and 
Moyssiadis (1999).  

In the next section we present that the design with the design matrix 
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where elements with indices 4, 5 and 6 are in positions 
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 respectively, is D-optimal in certain class of 

designs with the design matrix )1(]||[ 3 ±∈= ×nMvuxX , where 
T

nxxx ],,,[ 21 K=x , T
nuuu ],,,[ 21 K=u , T

nvvv ],,,[ 21 K=v , such that each 

column of matrix X  contains at least one 1 and one 1− . 
In proofs of theorems in the next section we used similar notation as in Li 

and Yang (2005) and Yeh and Lo Huang (2005). In particular, we used the fol-
lowing inequalities for the determinant formulated in Horn and Johnson (1985). 

Lemma 1.1. (Hadamard's inequality). If ][ ijp=P  is an nn×  positive 

semi-definite matrix, then 
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Futhermore, when P  is positive definite, then equality holds if and only if 
P  is diagonal. 

Lemma 1.2. (Fischer's inequality). If 


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is a positive definite matrix that is partitioned so that B  and D  are square and 
nonempty, then 

).det()det()det( DBP ≤  

2. D-optimal weighing designs 

In this section we present new results concerning D-optimal chemical ba- 
lance weighing designs. First we must define some notation. 

For any vector )1(],,,[ 121 ±∈= ×n
T

n Mxxx Kx , we define the number 

}.11,:{#)( 1 −≤≤−== + nixxics iix  

For example, if T]1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1[ −−−−−−−=x , then 

4)( =xcs . 

For a matrix )1(]||[ 3 ±∈= ×nMvuxX  we define the function 

),,()( vuxX ff =  by the formula 
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The value of the above function does not change if we interchange two columns 
of the matrix X  and we multiply any column of this matrix by 1− . Thus the 
matrix which maximizes the function f  is unique with the exactness to the 
above operations. We define also the following notation 
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]2)1)(2)[(1( +−−−==∆ ρρ nT A11  and )ˆ(ˆ Xff = , where X̂  is given by 
formula (1.1). 

First, we consider the special case 4=n . Thus )2)(1(2 ρρ −−=∆ , 
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In this case we proved the following 
 
Theorem 2.1. Let 4=n  and 01 ≤<− ρ . If  

},1)(,1)(,1)(:)1(]||{[]||[ 3 ≥≥≥±∈∈ × γβαγβαvux cscscsM n  

then 

).,,(ˆ vuxff ≥  

This class of designs is very small and we are able to write out all designs. 
For example, when 2)(,1)(,1)( === vux cscscs , we consider only nine de-
signs with design matrices given below 
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Then it is easy to see that )(ˆ
iff X≥  for 9,,2,1 K=i .  

Immediately, from the above theorem we have the following corollary. 
 
Corollary 2.2. For 4=n  and 01 ≤<− ρ  the design with the design ma-

trix X̂  given by (1.1) is D-optimal in the class of designs with the design ma-
trix )1(34 ±∈ ×MX  such that each column of the matrix X  contains at least one 

1 and one 1− . 
 
Now, suppose that 8≥n  and )4(mod0≡n . Therefore 
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 In proof of the below theorem, we used the Hadamard and Fischer inequalities. 
 
Theorem 2.3. Let K,3,2,4 == θθn  and 01 ≤<− ρ . If 

},2)(,1)(,1)(:)1(]||{[]||[ 3 ≥≥≥±∈∈ × γβαγβαvux cscscsM n  

then 

).,,(ˆ vuxff ≥  

Corollary 2.4. For )4(mod0≡n  and 01 ≤<− ρ  the design with the design 

matrix X̂  given by (1.1) is D-optimal in the class of designs with the design 
matrix )1(]||[ 3 ±∈= ×nMvuxX  such that 2)(,1)(,1)( ≥≥≥ vux cscscs . 

 
In the case, when we consider the class of the designs with the design matrices 

)1(]||[ 3 ±∈= ×nMvuxX  such that 1)(,1)(,1)( ≥≥≥ vux cscscs  we ob-

tained (using Fischer’s inequality) weaker theorem as in Yeh and Lo Huang 
(2005). 
 

Theorem 2.5. Let K,3,2,4 == θθn  and 0
1

1 ≤≤
+

− ρ
n

. If 
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then  
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Therefore, in the class of designs with the design matrix )1(3 ±∈ ×nMX  

such that each column of matrix X  contains at least one 1 and one 1−  we have 
the below corollary.   

Corollary 2.6. For )4(mod0≡n  and 0)1/(1 ≤≤+− ρn  the design with 

the design matrix X̂  given by (1.1) is D-optimal in the class of designs with the 
design matrix )1(]||[ 3 ±∈= ×nMvuxX  such that 1)(,1)(,1)( ≥≥≥ vux cscscs .  

 
It is easy to see that when 0=ρ  the matrix S is the identity matrix. This 

case is  well known in literature (see Hotelling, 1944 or Galil and Kiefer, 1980). 
Results present in this paper for 0=ρ  are consistent with results in literature.  
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3. Conclusion 

We considered D-optimality problem if ]0,1(−∈ρ  and 3=p . We be-
lieve that the techniques presented in this paper could be extended to resolve 
this problem for 3>p . For the present this problem is open.   
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O PEWNEJ KONSTRUKCJI D-OPTYMALNYCH 
CHEMICZNYCH UKŁADÓW WAGOWYCH 

Streszczenie 

W niniejszej pracy dyskutowany jest problem estymacji miar obiektów w chemicznym ukła-
dzie wagowym w oparciu o kryterium D-optymalności. Zakłada się, Ŝe błędy losowe tworzą pro-
ces autoregresyjny rzędu pierwszego, zwany procesem )1(AR . Pokazano, Ŝe układ o macierzy 

układu X̂  dany wzorem (1.1) jest D-optymalny w pewnej klasie układów o macierzy układu 
)1(3 ±∈ ×nMX  takiej, Ŝe kaŜda kolumna macierzy X  zawiera przynajmniej jeden element równy 

1 oraz jeden równy 1− .  

Słowa kluczowe: chemiczne układy wagowe, D-optymalne układy, proces AR(1)  
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