PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 86 | 1 |

Tytuł artykułu

Triterpenoid profile of fruit and leaf cuticular waxes of edible honeysuckle Lonicera caerulea var. kamtschatica

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Edible honeysuckle (honeyberry) Lonicera caerulea is becoming popular as a novel berry crop with several useful features such as early fruit ripening and exceptional hardiness, particularly resistance to pests and diseases as well as severe frosts in winter and droughts in summer. The triterpenoid profile of fruit and leaf cutic­ular waxes of edible honeysuckle (a Russian cultivar Chernichka) was analyzed by GC-MS. The major compounds identified were the tetracyclic triterpenoids campesterol, cholesterol, cycloartanol, cycloart-23-ene-3,25-diol, 24-methylenecy­cloartanol (only in leaves), sitosterol, stigmasta-3,5-dien-7-one, and stigmasterol; and the pentacyclic triterpenes: α-amyrin, β-amyrin, hop-22(29)-en-3-one, olea­nolic acid, and ursolic acid. Several remarkable features of the analyzed triterpenoid contents were revealed, including the relatively low abundance of triterpenoids in fruit waxes (6.5% of wax extract) compared to leaf waxes (22%), and a particularly high proportion of tetracyclic triterpenoids (tetracyclic to pentacyclic compound ratios of 4:1 in fruits and almost 7:1 in leaves). These rare features distinguish the triterpenoid profile of the cuticular waxes of L. caerulea var. kamtschatica from the majority of triterpenoid profiles in plant cuticular waxes investigated to date. To our knowledge, this is the first quantitative compositional study on triterpe­noid compounds in the cuticular waxes of edible honeysuckle, supplementing the knowledge of cuticular triterpenoid diversity and distribution.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

86

Numer

1

Opis fizyczny

Article 3539 [9p].,fig.,ref.

Twórcy

autor
  • Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
  • Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
autor
  • Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland

Bibliografia

  • 1. Shang X, Pan H, Li M, Miao X, Ding H. Lonicera japonica Thunb.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol. 2011;138(1):1–21. https://doi.org/10.1016/j.jep.2011.08.016
  • 2. Plekhanova MN. Blue honeysuckle (Lonicera caerulea L.) – a new commercial berry crop for temperate climate: genetic resources and breeding. Acta Hortic. 2000;538:159–164. https://doi.org/10.17660/ActaHortic.2000.538.25
  • 3. Hummer KE. Blue honeysuckle: a new berry crop for North America. Journal of the American Pomological Society. 2006;60(1):3–8.
  • 4. Ochmian I, Skupień K, Grajkowski J, Smolik M, Ostrowska K. Chemical composition and physical characteristics of fruits of two cultivars of blue honeysuckle (Lonicera caerulea L.) in relation to their degree of maturity and harvest date. Not Bot Horti Agrobot Cluj Napoca. 2012;40(1):155–162.
  • 5. Kula M, Majdan M, Radwańska A, Nasal A, Hałasa R, Głód D, et al. Chemical composition and biological activity of the fruits from Lonicera caerulea var. edulis ‘Wojtek’. Academia Journal of Medicinal Plants. 2013;1(8):141–148.
  • 6. Ochmian I, Grajkowski J, Skupień K. Field performance, fruit chemical composition and firmness under cold storage and simulated “shelf-life” conditions of three blue honeysuckle cultigens (Lonicera caerulea). Journal of Fruit and Ornamental Plant Research. 2008;16:83–91.
  • 7. Jurikova T, Rop O, Mlcek J, Sochor J, Balla S, Szekeres L, et al. Phenolic profile of edible honeysuckle berries (genus Lonicera) and their biological effects. Molecules. 2012;17(1):61–79. https://doi.org/10.3390/molecules17010061
  • 8. Chaovanalikit A, Thompson MM, Wrolstad RE. Characterization and quantification of anthocyanins and polyphenolics in blue honeysuckle (Lonicera caerulea L.). J Agric Food Chem. 2004;52(4):848–852. https://doi.org/10.1021/jf030309o
  • 9. Wojdyło S, Jáuregui PNN, Oszmiański J, Golis T. Variability of phytochemical properties and content of bioactive compounds in Lonicera cearulea L. var. kamtschatica berries. J Agric Food Chem. 2013;61(49):12072–12084. https://doi.org/10.1021/jf404109t
  • 10. Mahato SB, Nandy AK, Roy G. Triterpenoids. Phytochemistry. 1992;31(7):2199–2249. https://doi.org/10.1016/0031-9422(92)83257-Y
  • 11. Phillips DR, Rasbery JM, Bartel B, Matsuda SP Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol. 2006;9(3):305–314. https://doi.org/10.1016/j.pbi.2006.03.004
  • 12. Patlolla JM, Rao CV. Triterpenoids for cancer prevention and treatment: current status and future prospects. Curr Pharm Biotechnol. 2012;13(1):147–155. https://doi.org/10.2174/138920112798868719
  • 13. Podolak I, Janeczko Z. Pharmacological activity of natural non-glycosylated triterpenes. Mini Rev Org Chem. 2014;11(3):280–291. https://doi.org/10.2174/1570193X1103140915105546
  • 14. Szakiel A, Pączkowski C, Pensec F, Bertsch C. Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochem Rev. 2012;11(2–3):263–284. https://doi.org/10.1007/s11101-012-9241-9
  • 15. Jetter R, Kunst L, Samuels AL. Composition of plant cuticular waxes. In: Riederer M, Müller C, editors. Biology of the plant cuticle. Oxford: Blackwell Publishing; 2006. p. 155–157. (Annual Plant Reviews; vol 23). https://doi.org/10.1002/9780470988718.ch4
  • 16. Tsubaki S, Sugimura K, Teramoto Y, Yonemori K, Azuma J. Cuticular membrane of Fuyu persimmon fruit is strengthened by triterpenoid nano-fillers. PLoS One. 2013;8:e75275. http://dx.doi.org/10.1371/journal.pone.0075275
  • 17. Lara I, Belge B, Goulao LF. The fruit cuticle as a modulator of postharvest quality. Postharvest Biol Technol. 2014;87:103–112. https://doi.org/10.1016/j.postharvbio.2013.08.012
  • 18. Seeram NP. Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem. 2008;56(3):627–629. https://doi.org/10.1021/jf071988k
  • 19. Szakiel A, Pączkowski C, Koivuniemi H, Huttunen S. Comparison of the triterpenoid content of berries and leaves of lingonberry Vaccinium vitis-idaea from Finland and Poland. J Agric Food Chem. 2012;60:4994–5002. https://doi.org/10.1021/jf300375b
  • 20. Szakiel A, Pączkowski C, Huttunen S. Triterpenoid content of berries and leaves of bilberry Vaccinium myrtillus from Finland and Poland. J Agric Food Chem. 2012;60(48):11839–11849. https://doi.org/10.1021/jf3046895
  • 21. Pensec F, Pączkowski C, Grabarczyk M, Woźniak A, Bénard-Gellon M, Bertsch C, et al. Changes in the triterpenoid content of cuticular waxes during fruit ripening of eight grape (Vitis vinifera) cultivars grown in the Upper Rhine Valley. J Agric Food Chem. 2014;62(32):7998–8007. https://doi.org/10.1021/jf502033s
  • 22. Pensec F, Szakiel A, Pączkowski C, Woźniak A, Grabarczyk M, Bertsch C, et al. Characterization of triterpenoid profiles and triterpene synthase expression in the leaves of eight Vitis vinifera cultivars grown in the Upper Rhine Valley. J Plant Res. 2016;129(3):499–512. https://doi.org/10.1007/s10265-016-0797-0
  • 23. Szafranek BM, Synak EE. Cuticular waxes from potato (Solanum tuberosum) leaves. Phytochemistry. 2006;67(1):80–90. https://doi.org/10.1016/j.phytochem.2005.10.012
  • 24. Szakiel A, Niżyński B, Pączkowski C. Triterpenoid profile of flower and leaf cuticular waxes of heather Calluna vulgaris. Nat Prod Res. 2013;27(15):1404–1407. https://doi.org/10.1080/14786419.2012.742083
  • 25. Medina E, Aguia G, Gomez M, Aranda, J, Medina JD, Winter K. Taxonomic significance of the epicuticular wax composition in species of the genus Clusia from Panama. Biochem Syst Ecol. 2006;34:319–326. https://doi.org/10.1016/j.bse.2005.10.009
  • 26. Cordeiro SZ, Simas NK, Arruda RCO, Sato A. Composition of epicuticular wax layer of two species of Mandevilla (Apocynoideae, Apocynaceae) from Rio de Janeiro, Brazil. Biochem Syst Ecol. 2011;39(3):198–202. https://doi.org/10.1016/j.bse.2011.02.009
  • 27. Medina E, Aguiar G, Gómez M, Medina JD. Patterns of leaf epicuticular waxes in species of Clusia: taxonomical implications. Interciencia. 2004;29:579–582.
  • 28. Kondo M, MacKinnon SL, Craft CC, Matchett MD, Hurta RAR, Neto CC. Ursolic acid and its esters: occurrence in cranberries and other Vaccinium fruit and effects on matrix metalloproteinase activity in DU145 prostate tumor cells. J Sci Food Agric. 2011;91(5):789–796. https://doi.org/10.1002/jsfa.4330
  • 29. Szakiel A, Mroczek A. Distribution of triterpene acids and their derivatives in organs of cowberry (Vaccinium vitis-idaea L.) plant. Acta Biochim Pol. 2007;54(4):733–740.
  • 30. Guinda A, Rada M, Delgado T, Gutiérrez-Adánez P, Castellano JM. Pentacyclic triterpenoids from olive fruit and leaf. J Agric Food Chem. 2010;58(17):9685–9691. https://doi.org/10.1021/jf102039t
  • 31. Murphy BT, MacKinnon SL, Yan X, Hammond GB, Vaisberg AJ, Neto CC. Identification of triterpene hydroxycinnamates with in vitro antitumor activity from whole cranberry fruit (Vaccinium macrocarpon). J Agric Food Chem. 2003;51(12):3541–3545. https://doi.org/10.1021/jf034114q
  • 32. Xiang T, Tezuka Y, Wu LJ, Banskota AH, Kadota S. Saponins from Lonicera bournei. Phytochemistry. 2000;54(8):795–799. https://doi.org/10.1016/S0031-9422(00)00194-1

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-aeab1faf-d919-4946-9ceb-f19b55837428
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.