PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 3 |

Tytuł artykułu

Efficiency optimization of pharmaceutical wastewater treatment by a microwave-assisted fenton-like process using special supported catalysts

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The efficiency of a microwave-assisted Fenton-like process using special supported catalysts was evaluated using total organic carbon (TOC) removal from pharmaceutical wastewater. No acidifi cation was required. The highest level of TOC removal efficiency from wastewater achieved was 65.88%. Moreover, the maximum number of consecutive uses with high activity was four. Under optimal conditions, the influent value of BOD5/COD was 0.25, and the effluent value of BOD5/COD was elevated to 0.40. In addition, colour was completely removed. This efficiency was compared with the same MW-Fentonlike process using common supported catalysts, where the highest achieved TOC removal efficiency from wastewater was 39.25%, the colour of the wastewater decreased from 50 to 20, and the value of BOD5/COD was elevated from 0.25 to 0.34. The maximum number of consecutive high activity uses was two. This advanced performance was attributed to no presence of copper carbonate or cerium carbonate on the surface of special supported catalysts. The preparation method for these catalysts combined the merits of the isometric impregnation method with some new improvements. Its advantages include high-efficiency performance, short preparation time, low reagent usage (cupric nitrate 3.6 g, cerium nitrate 1.2 g, ammonia 1 mL), and reusability. The properties of the catalyst with the most efficient performance were characterized by determining surface particle size, the relative amount of active components and promoters, and the stable crystal form of the active components.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

3

Opis fizyczny

p.1205-1214,fig.,ref.

Twórcy

autor
  • School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
  • School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
autor
  • School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China

Bibliografia

  • 1. WANG N.N., WANG P. Study and application status of microwave in organic wastewater treatment – A review. Chem. Eng. J. 283, 193, 2016.
  • 2. SUN Y., ZHANG Y.B., QUAN X. Treatment of petroleum refinery wastewater by microwave-assisted catalytic wet air oxidation under low temperature and low pressure. Sep. Purif. Technol. 62, 565, 2008.
  • 3. ZHANG Y.B., QUAN X., CHEN S., ZHAO Y.Z., YANG F.L. Microwave assisted catalytic wet air oxidation of H-acid in aqueous solution under the atmospheric pressure using activated carbon as catalyst. J. Hazard. Mater. 137, 534, 2006.
  • 4. ATTA A.Y., JIBRIL B.Y., AL-WAHEIBI T.K., ALWAHEIBI Y.M. Microwave-enhanced catalytic degradation of 2- nitrophenol on alumina-supported copper oxides. Catal. Commun. 26, 112, 2012.
  • 5. MARTINS R.C., AMARAL-SILVA N., QUINTAFERREIRA R.M. Ceria based solid catalysts for Fenton’s depuration of phenolic wastewaters, biodegradability enhancement and toxicity removal. Appl. Catal. B 99, 135, 2010.
  • 6. LIU X., KHINAST J.G., GLASSER B.J. A parametric investigation of impregnation and drying of supported catalysts. Chem. Eng. Sci. 63, 4517, 2008.
  • 7. LI G.H., HU L.J., HILL J.M. Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation. Appl. Catal. A 301, 16, 2006.
  • 8. SHU Y.Y., MURILLO L.E., BOSCO J.P., HUANG W., FRENKEL A.I., CHEN J.G. The effect of impregnation sequence on the hydrogenation activity and selectivity of supported Pt/Ni bimetallic catalysts. Appl. Catal. A 339, 169, 2008.
  • 9. LEE S.J., GAVRIILIDIS A. Supported Au Catalysts for Low Temperature CO Oxidation Prepared by Impregnation. J. Catal. 206, 305, 2002.
  • 10. HUANG Z.W., CUI F., XUE J.J., ZUO J.L., CHEN J., XIA C.G. Cu/SiO2 catalysts prepared by homo- and heterogeneous deposition-precipitation methods, Texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1,2-propanediol. Catal. Today 183, 42, 2012.
  • 11. CEN Y.Q., LI X.N., LIU H.Z. Preparation of copper-based catalysts for methanol synthesis by acid-alkali-based alternate precipitation method. Chin. J. Catal. 27, 210, 2006.
  • 12. QIAN K., FANG J., HUANG W.X., HE B., JIANG Z.Q., MA Y.S., WEI S.Q. Understanding the deposition-precipitation process for the preparation of supported Au catalysts. J. Mol. Catal. A 320, 97, 2010.
  • 13. ROMERO-SÁEZ M., DIVAKAR D., ARANZABAL A., GONZÁLEZ-VELASCO J.R., GONZÁLEZ-MARCOS J.A. Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior. Appl. Catal. B 180, 210, 2016.
  • 14. CHANG F.W., KUO W.Y., YANG H.C. Preparation of Cr2O3-promoted copper catalysts on rice husk ash by incipient wetness impregnation. Appl. Catal. A 288, 53, 2005.
  • 15. CHANG F.W., KUO M.S., TSAY M.T., HSIEH M.C. Hydrogenation of CO2 over nickel catalysts on rice husk ashalumina prepared by incipient wetness impregnation. Appl. Catal. A 247, 309, 2003.
  • 16. BOWKER M., NUHU A., SOARES J. High activity supported gold catalysts by incipient wetness impregnation. Catal. Today 122, 245, 2007.
  • 17. AMERICAN PUBLIC HEALTH ASSOCIATION. Standard Methods for the Examination of Water and Wastewater (18th ed): Washington, DC, USA, 1992.
  • 18. WANG N.N., ZHENG T., ZHENG T., JIANG J.P., WANG P. Cu(II)-Fe(II)-H2O2 oxidative removal of 3-nitroaniline in water under microwave irradiation. Chem. Eng. J. 260, 386, 2015.
  • 19. ATTA A.Y., JIBRIL B.Y., AL-WAHEIBI T.K. Microwaveenhanced catalytic degradation of 2-nitrophenol on aluminasupported copper oxides. Catal. Commun. 26, 112, 2012.
  • 20. ZHANG L., YAN F., SHU M.M., LI Q., ZHAO Z.Y. Investigation of the degradation behaviour of Methamidophos under microwave irradiation. Desalination 247, 396, 2009.
  • 21. ZHANG Y.B., QUAN X., CHEN S., ZHAO Y.Z., YANG F.L. Microwave assisted catalytic wet air oxidation of H-acid in aqueous solution under the atmospheric pressure using activated carbon as catalyst. J. Hazard. Mater. 137, 534, 2006.
  • 22. BI X.Y., WANG P., JIANG H., XU H.Y., SHI S.J., HUANG J.L. Treatment of phenol wastewater by microwave-induced 1214 Qi X., Li Z. ClO2-CuOx/Al2O3 catalytic oxidation process. J. Environ. Sci.-China 19, 1510, 2007.
  • 23. GUO R.T., CHEN Q.L., DING H.L., WANG Q.S., PAN W.G., YANG N.Z., LU C.Z. Preparation and characterization of CeOx@MnOx core-shell structure catalyst for catalytic oxidation of NO. Catal. Commun. 69, 165, 2015.
  • 24. BI X.Y., WANG P., JIAO C.Y., CAO H.L. Degradation of remazol golden yellow dye wastewater in microwave enhanced ClO2 catalytic oxidation process. J. Hazard. Mater. 168, 895, 2009.
  • 25. NIE Y.L., ZHANG L.L., LI Y.Y., HU C. Enhanced Fentonlike degradation of refractory organic compounds by surface complex formation of LaFeO3 and H2O2. J. Hazard. Mater. 294, 195, 2015.
  • 26. BOLDRINI D.E., TONETTO G.M., DAMIANI D.E. Experimental study of the deactivation of Pd on anodized aluminum monoliths during the partial hydrogenation of vegetable oil. Chem. Eng. J. 270, 378, 2015.
  • 27. DIAZ E., MOHEDANO A.F., CASAS J.A., RODRIGUEZ J.J. Analysis of the deactivation of Pd, Pt and Rh on activated carbon catalysts in the hydrodechlorination of the MCPA herbicide, Appl. Catal. B 181, 429, 2016.
  • 28. TORRES-MANCERA P., RAYO P., ANCHEYTA J., MARROQUÍN G., CENTENO G., ALONSO F. Characterization of spent and regenerated catalysts recovered from a residue hydrotreating bench-scale reactor. Fuel 149, 143, 2015.
  • 29. DUAN H.T., LIU Y., YIN X.H., BAI J.F., QI J. Degradation of nitrobenzene by Fenton-like reaction in a H2O2/ schwertmannite system. Chem. Eng. J. 283, 873, 2016.
  • 30. INCHAURRONDO N., FONT J., RAMOS C.P., HAURE P. Natural diatomites: Efficiency green catalyst for Fenton-like oxidation of Orange II. Appl. Catal. B: Environ. 181, 481, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ad89a55c-c7c4-4b4e-a8cd-91e29a45a108
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.