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INVESTIGATIONS OF THE SPACE VIBRATIONS
OF A WOODWORKING SHAPER 

The proposed study investigates the spatial vibrations of a woodworking shaper. It
presents an original mechanic-mathematical model targeted to investigations of
the spatial  vibrations of  woodworking shapers,  developed by the authors.  The
model considers  woodworking shapers with lower placement of the spindle. In
this model the woodworking shaper, the spindle and the electric motor’s rotor are
regarded as rigid bodies, which are connected by elastic and damping elements
with each other and with the motionless floor. The model takes into account the
needed mass,  inertia, elastic and  damping  properties  of  the  elements of the
considered system. It includes all necessary geometric parameters of this system.
After that a system of matrix differential  equations is  compiled and analytical
solutions  are  derived.  Numerical  calculations  are  carried  out  by  using  the
developed  model  and  modern  computer  programs.  The  calculations  use  the
parameters of  a machine used in practice.  As a result  of the whole study,  the
natural  frequencies  and the  mode shapes  of  the  free  spatial  vibrations  of  the
studied mechanical system are calculated and illustrated. Then the free damped
spatial vibrations of this system are obtained and illustrated also.
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Introduction 

The tendency to significantly reduction of the level of the vibrations and the
noise accompanying the work of modern woodworking machines in recent years
implies expanding and deepening the research of the dynamic processes in these
machines. The specificity of the work of woodworking shapers implies frequent
passing through transient regimes. It turns out that studying the characteristics of
these regimes is especially important to ensure the proper machine’s work [Veits
et  al.  1971;  Orlowski  et  al.  2007;  Barcík  et  al.  2011;  Kminiak  et  al.  2016].
Consequently, a careful study of damped vibrations of this machine is required
[Gochev and Vukov 2017; Gochev et al. 2017]. Investigations of these vibrations
facilitate selecting of some of the woodworking shaper’s components and aid the
control  of  its  technical  state  [Minchev  and  Grigorov  1998;  Beljo-Lučić  and
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Goglia 2001;  Barcík et  al.  2011].  This  mainly  concerns  the  vibroisolators
between the machine and the floor, as well as the bearing units of the spindle and
the  rotor  of  the  electric  motor  [Stevens  2007].  Such  a  study  can  be  done
numerically with the parameters of a particular woodworking shaper [Nikravesh
1988; Shabana 2005; Vukov et al. 2016]. It is based on a previously developed
mechanic-mathematical  model  of  this  machine  [Coutinho  2001;  Amirouche
2006; Angelov 2011].

The  proposed  study  considers  the  class  of  woodworking shapers with
a lower spindle position, which are often used in practice of the forestry industry.
The analysis of their construction shows the strong interconnection between the
work of spindle with mounted tool on it, the rotor of the drive motor and the
operation  of  the  whole  machine. The  idea  that  the  woodworking  shaper,  its
spindle and the electric motor’s rotor are regarded as rigid bodies, which are
connected  by  elastic  and  damping  elements  with  each  other  and  with  the
motionless floor, derives from this analysis. These elastic and damping elements
are four-vibration isolators between the machine and the floor, two bearing units
of the spindle and two bearing units of the electric motor’s rotor.

The  aim  of  this study is  to  investigate  the  spatial  vibrations  of  the
woodworking  shaper. Therefore,  first  it  is  necessary to  develop mechanic  –
mathematical model of the woodworking shaper, its spindle and the rotor of the
driving electric motor. The model should take into account the characteristics of
the woodworking shaper  construction,  the  mass,  inertia,  elastic  and damping
properties of its components as well as all needed geometric parameters of the
system. A system of matrix differential equations is composed on the basis of
this  model  and analytical  solutions  are  presented.  Numerical  calculations  are
carried out by using the developed model and modern computer programs. The
calculations  use  the  parameters  of  a  real  machine.  The  obtained  results  are
illustrated graphically so as to make their analysis easier.

Materials and methods 

This study examines the class of woodworking shapers with a low positioned
spindle, which are often used in the practice of the forestry industry  [Filipov
1977;  Obreshkov 1996]. The analysis  of  their  construction shows the  strong
influence  of  the  spindle  and the  drive  motor  on  the  operation  of  the  whole
machine.  Figure 1 shows the general view of woodworking shapers.  Figure 2
shows a scheme of this type of woodworking shapers. The machine’s body is
marked with 1, 2 is the drive electric motor, 3 – the belt drive, 4 – the vibration
isolators between the machine and the floor, 5 – the spindle with the bearings, 6
– wood shaper’s saw.

Figure 3 shows the spindle with its bearing units. Figure 4 shows the spindle
with fitted cutter. Figure 5 shows the drive electric motor.
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Fig. 1. General view of wood shaper Fig. 2. Scheme of wood shapers 

Fig. 3. Spindle with Fig. 4. Spindle with fitted cutter Fig. 5. Drive electric motor
its bearing units

In the following discussions, the  woodworking shaper,  its spindle and  the
rotor  of  the  driving  electric  motor are  regarded  as rigid  bodies,  which  are
connected by  elastic and  damping  elements with  each  other  and with the
motionless  floor.  These elastic and  damping  elements  are the  four vibration
isolators between the machine and the floor, the two bearing units of the spindle,
and the two bearing units of the electric motor’s rotor.

A mechanic-mathematical model of wood shapers with lower spindle is built
for studying its free damped spatial vibrations. The model is shown in Figure 6.
The following symbols are used:
m1, m2, m3 – mass of the woodworking shaper, the spindle and the rotor of the
driving electric motor;
Iθ θ

1 ,Iθ θ
2 ,Iθ θ

3 – inertia moment tensors of the  woodworking  shaper , the spindle
and the rotor of the driving electric motor;
cx1i, cy1i, cz1i, i = 1, 2, 3, 4 – elastic coefficients of the vibroisolators between the
machine and the floor;
bx1i, by1i, bz1i, i = 1, 2, 3, 4 – damping coefficients of the vibroisolators between
the machine and the floor;
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cx2i, cy2i, cz2i , i = 1, 2 – elastic coefficients between the body of the machine and
the spindle;
bx2i, by2i, bz2i,  i = 1, 2 – damping coefficients between the body of the machine
and the spindle; 
cx3i, cy3i, cz3i, i = 1, 2– elastic coefficients between the body of the machine and
the rotor of the driving electric motor;
bx3i, by3i, bz3i,  i = 1, 2 – damping coefficients between the body of the machine
and the rotor of the driving electric motor.

Fig.  6.  Mechanic - mathematical  model  of wood shapers with lower spindle for
studying its free damped spatial vibrations

The three bodies of the mechanical system perform spatial vibrations - three
small translations and three small rotations relative to the axes of the rectangular
local coordinate systems that are fixedly connected to the bodies. It is assumed
that  the  axes  of  the  local  coordinate  systems are  parallel  to  the  axes  of  the
reference coordinate system.

The position of the mechanical system in space is defined by the vector of
the generalized coordinates (Fig. 6), which is
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q=[ x1 y1 z1θx 1θ y 1θ z1 x 2 y2 z 2θx2θ y 2θ z 2 x3 y3 z 3θx3θ y3θz 3 ]
T

(1)

The  mechanical  system  has  18  degrees  of  freedom.  The  building  of  its
mechanic-mathematical model is presented below.

The matrixes of the  transition in small vibrations from the local coordinate
systems of the bodies Oi xi yi zi to the reference coordinate system Oxyz have the
form

A i
0=[

1 −θzi θ yi x i

θzi 1 −θ xi yi

−θ yi θxi 1 zi

0 0 0 1
] , i=1,2,3 (2)

The  vector of the  position  of the  center  of  mass of  the  relevant body,
projected in the reference coordinate system, is determined with

RCi
0 =Ai

0⋅rCi=[
lCx+x i+ lCz⋅θ yi−lCy⋅θzi

lCy+ yi+lCz⋅θxi−lCx⋅θ zi

lCz +z i+ lCy⋅θxi−lCx⋅θ yi

1
] , i=1,2,3 (3)

where   T
Cir CzCyCx lll  is the vector of the position of the center of mass in

the local coordinate system.
The  linear  velocity  vector  of  any  point  Ci of  body  i,  projected in  the

reference coordinate system, is obtained by differentiating by the time of the
position’s vector of the same point

VCi
0 =

d R Ci
0

dt
=[

ẋi+lCz⋅θ̇yi− lCy⋅θ̇ zi

ẏ i+ lCz⋅θ̇ xi−lCx⋅θ̇zi

żi+lCy⋅θ̇ xi−lCx⋅θ̇yi

0
] , i=1,2,3 (4)

The vector of angular velocity of the body i, projected in the local coordinate
system, is

Ωi
i=[

θ̇ xi

θ̇ yi

θ̇zi

0
] , i=1,2,3 (5)

The kinetic energy of the mechanical system is

EK =∑
i=1

3

E Ki (6)
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where EKi=
1
2
⋅(mRR

i
⋅V Ci

0 T
⋅V Ci

0
+Ωi

i T
⋅I ωω⋅Ωi

i ) , mRR
i =∫

V i

ρi⋅I⋅dV i=mi⋅I .

The elements of the matrix M of mass-inertial properties are defined by the
expression

mi , j=
∂2 EK

∂ q̇i⋅∂ q̇i

(7)

The potential energy is defined by

EP=EPK (q )m+E PG(q)i (8)

where EPK (q)m=∑
m=1

8 1
2
⋅qT

⋅C(q )⋅q , EPG (q)i=∑
i=1

3

−mi⋅gT
⋅RCi

0 ,

C(q) is a matrix of elastic properties,
g=[0 0 g 0]T – vector of gravitational acceleration,
m –  the  number  of  the  elastic  element  between  two  bodies  of  the

mechanical system.
The differential equations of the free damped spatial vibrations are derived

by using the Lagrange’s method 

d
dt (∂ E K

∂ q̇ )−(∂ EK

∂q )+∂ F b

∂ q̇
+

∂ EP

∂ q
=0 (9)

where  EK and  EP are respectively the kinetic and the potential  energy of the
systems, and Fb is the energy dissipation or dissipative function.

The obtained system of differential equations, which describes the small free
damped vibrations of the mechanical system, is

M⋅q̈+B⋅q̇+C⋅q=0 (10)

The  matrix in  these  equations which  characterizes  the  mass-inertial
properties of the mechanical system is М, and the elastic properties – C⋅B(q̇)
is the matrix that characterizes the damping properties of this system.

M=[aij] , aij=
∂2 E K

∂ q̇i⋅∂ q̇ j

, C=[cij ] , cij=
∂2 E P

∂qi⋅∂q j

The matrix B = [bm,n] is obtained by substituting the elements of the matrix C –
cm,n, with bm,n.

Solutions of the system of the differential equations (10) are searched as

q=V⋅e pt (11)

After differentiation of equations (11) and substituting in (10) it is obtained

( p2⋅M+ p⋅B+C)V=0 (12)
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where V is the matrix of natural vectors (modal matrix).
The matrix of natural vectors (modal matrix) has the form

V=[vr , j ]18×18 (13)

where vr = [vri],  i = 1, 2, ..., 18  is the natural mode vector on the  generalized
coordinate for r-th natural frequency.

The vibrations are defined by their natural values pr and their natural vectors
ur, which in their general type are complex conjugate numbers

pr=−αr ±i⋅βr , ur=vr ±i⋅wr (14)

where αr=σ r⋅ωr , βr=ω r √1−σ r
2 ,

σ r – relative damping coefficient,
αr – damping coefficient,
βr – frequency of free damping vibrations,
wr – the imaginary part of the natural vector caused by the damping of the 
system,
v r , ωr – mode shapes and natural frequencies of not damping system.

The determination of ar and wr from the matrix V and B makes it possible to
form this matrix

K=(VT⋅M⋅V)−1⋅(VT⋅B⋅V)=[k ik ] (15)

The damping coefficients are ar = 0.5 krr. By using the matrix K is formed
the matrix

D=[d ik ] ∣ d ik=0, when ω i
2=ωk

2 ;

dik=k ik

ωk

(ωk
2−ω i

2)
, when ωi

2≠ωk
2∣ (16)

The matrix  W of the imaginary part of the natural vectors of the damped
system is determined by the formulas

W=V⋅D (17)

where D = [dik] is matrix (16); V = [vrk] – matrix (13).
The general solutions of the system of natural values pr and natural vectors

ur, are derived from the initial conditions of motion. The general solutions of the
system of differential  equations in matrix form, with initial  conditions  t = 0,
q(0) = q0, q̇ (0)= q̇0 are

q (t )=∑
r =1

18 2

g r
2
+hr

2 [G r⋅M⋅q̇(0)+(−αr⋅G r⋅M+βr⋅Hr⋅M+Gr⋅B)⋅q (0)] e−αr t⋅cosβt t+
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+∑
r=1

18 2

g r
2
+hr

2 [ Hr⋅M⋅q̇ (0 )+(−αr⋅Hr⋅M−βr⋅G r⋅M+Hr⋅B)⋅q (0) ]e−αr t
⋅sinβt t

where
g r=−2αr (Vr

T⋅M⋅Vr−Wr
T⋅M⋅W r)−4βr V r

T⋅M⋅W r+V r
T⋅B⋅Vr−Wr

T⋅B⋅W r ;

hr=2βr (Vr
T⋅M⋅V r−W r

T⋅M⋅Wr )−4αr Vr
T⋅M⋅Wr+2V r

T⋅B⋅Wr ;

Gr=gr Lr+hr R r ; L r=Vr⋅V r
T−W r⋅W r

T ;

H r=hr Lr−gr R r ; R r=Vr⋅W r
T+W r⋅V r

T .

Results and discussion

Carrying out numerical investigations of the spatial vibrations of a woodworking
shaper with lower spindle requires knowledge of the parameters of its elements.
Therefore the three bodies and the whole  machine are modeled with software
Solid Works. These models are shown respectively in Figures 7, 8, 9 and 10. The
mass  center of  the body 1 coincides with  the  center  of the  local  coordinate
system of the body 1 and the center of the reference coordinate system. The
mass  center of  the body 2 coincides with  the  center  of the  local  coordinate
system of the body 2. The mass center of the body 3 coincides with the center of
the local coordinate system of the body 3.

Fig. 7. Body 1 Fig. 8. Body 2 



Investigations of the space vibrations of a woodworking shaper 129

Fig. 9. Body 3 Fig. 10. Woodworking shaper

The  presented  data of  the  machine  FD-3,  which  is  produced  in ZDM –
Plovdiv, is used for calculations. 

Mass of the bodies: body 1 – m1 =  391,52 kg; body 2 – m2 =  11,123 kg;
body 3 – m3 = 14,378 kg. 

Tensor of mass inertia moments of the body 1 to the local coordinate system
of the body 1, kg·m2

I1=[
49.2672 −0.0395 −0.2525
−0.0395 52.0000 −0.4405
−0.2525 −0.4405 47.9480 ]

Tensor of mass inertia moments of the body 2 to the local coordinate system
of the body 2, kg.m2

I 2=[
0.2937 0 0

0 0.2937 0
0 0 0.0052 ]

Tensor of mass inertia moments of the body 3 to the local coordinate system
of the body 3, kg.m2

I3=[
0.0516 0 0

0 0.0516 0
0 0 0.0206 ]

The coordinates of the mass centers of the bodies are shown in table 1.
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Table 1. Coordinates of the centers of mass

Body No lCx, m lCy, m lCz, m

1 0       0       0     

2 0.009 0.066 –0.020

3 0.019 –0.115  –0.134

The coordinates of the supporting points of the elastic elements are shown in
tables 2, 3 and 4.

Table 2. Coordinates in the coordinate system of the body 1

Point lxi, m lyi, m lzi, m

1   0.309   0.316 -0.654

2   0.309 -0.284 -0.654

3 -0.291   0.316 -0.654

4 -0.291 -0.284 -0.654

5   0.009   0.066 -0.234

6   0.009   0.066   0.076

7   0.019 -0.015 -0.210

8   0.019 -0.015 -0.050

Table 3. Coordinates in the coordinate system of the body 2

Point lxi, m lyi, m lzi, m

5 0 0 -0.214

6 0 0   0.096

Table 4. Coordinates in the coordinate system of the body 3

Point lxi, m lyi, m lzi, m

7 0 0 -0,076

8 0 0 0,084

The elasticity and damping coefficients are shown in tables 5 and 6.

Table 5. Elasticity coefficients 

Between Bodies Cxi, N/m Cyi, N/m Czi, N/m

0-1   350000   350000   800000

1-2 2250000 2250000 2250000

2-3 2250000 2250000 2250000
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Table 6. Damping coefficients 

Between Bodies bxi, (N·s)/m byi, (N·s)/m bzi, (N·s)/m

0-1 980 670 470

1-2 980 670 470

2-3 980 670 470

The calculations are performed by using  a  software product  Mathematica.
The free space vibrations are investigated first. Figure 11 graphically illustrates
the  calculated natural  frequencies [Hz] and mode  shapes  of  free spatial
vibrations of the studied mechanical system. Natural frequencies are 120.24 Hz;
120.22  Hz;  119.30  Hz;  119.29  Hz;  102.90  Hz;  90.91Hz;  90.85Hz;  90.48Hz;
82.70  Hz;  82.67  Hz;  22.45  Hz;  21.98  Hz;  13.92  Hz;  11.50  Hz;  4.95  Hz;
4.94 Hz ;  0  Hz;  0  Hz .  These  values  are  required  for  determination  of  the

Fig. 11. Natural frequencies [Hz] and mode shapes of the studied mechanical system
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resonance  zones. The  knowledge  of  the  resonance  zones  allows  optimizing
working regimes by taking measures to avoid machine operation in these areas
or to pass quickly through them. The obtained and illustrated mode shapes are
useful for the investigation of the vibration behavior of the machine. Analysis of
the  received  natural  frequencies  and  mode  shapes  provides  an  additional
opportunity  for  the  formation  of  reasonable  recommendations  for  the
construction  of  these  machines.  Then  the  amplitudes  of  the  free  damped
vibrations  are  calculated  for  the  above-mentioned  wood  shaper.  Figure  12
graphically shows the results of the numerical investigations of the free damped
vibrations. Just a few of the results are represented here due to the limited place.
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Fig. 12. Results of the investigations

The  obtained  graphs  of  the  damped  vibrations  show  that  at  the  used
coefficients of elasticity and damping all vibrations in the mechanical system get
quiet  within 1 sec.  These coefficients  are on a machine in optimal technical
condition.  The presented model  allows  modelling and exploration of  various
technical  conditions  of  this  machine  and offers  possibilities  for  the  practical
determination of the current technical state.

Conclusions 

The presented study investigates spatial  vibrations of a woodworking shaper.
The  investigations  are  carried  out  on  the  base  of  an  original  mechanic-
-mathematical model of a woodworking shaper, developed by the authors.  The
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model considers woodworking shapers with lower placement of the spindle. In
this model the woodworking shaper, the spindle and the electric motor’s rotor
are  regarded  as  rigid  bodies,  which  are  connected  by  elastic and damping
elements with each other and with the motionless floor. It takes into account the
characteristics in the construction of woodworking shapers.  The model renders
into  account the  needed mass,  inertia, elastic and damping properties  of  the
elements of the  considered  system.  It includes all  necessary geometric
parameters  of this  system.  Then  a  compiled  system  of  matrix  differential
equations  is  presented  and  analytical  solutions  are  derived.  Numerical
calculations are carried out by using the developed model and modern computer
programs. The calculations use parameters of a machine, used in practice. As
a result  of  the  whole  study,  the  spatial  vibrations  of  the  studied  mechanical
system are obtained and illustrated. The results of the conducted study allow
analyzing the influence of the parameters of the elastic and damping elements of
the  construction  on  the  machine’s  work.  The  main  goal  is  to  increase  the
reliability  of  the  machine,  as  well  as  the  accuracy  and quality  of  the  wood
articles' processing.
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