PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 496 | 2 |

Tytuł artykułu

Reakcje aparatu fotosyntetycznego siewek kukurydzy na stres solny

Treść / Zawartość

Warianty tytułu

EN
Photsynthetic aparatus reactions of maize seedlings to salt stress

Języki publikacji

PL

Abstrakty

PL
Zbadano wpływ różnego stężenia zasolenia NaCl (0, 60, 90, 120 i 180 mmol·dm⁻³) na reakcje aparatu fotosyntetycznego siewek kukurydzy (Zea mays odmiana Nysa). Zanalizowano sekwencje reakcji siewek na stres solny w ciągu krótkiego czasu (2, 6, 24, 72, 120 i 168 godzin po zastosowaniu zasolenia). Pomiarów dokonano przy użyciu dwóch metod (wymiany gazowej oraz fluorescencji chlorofilu a) w hali wegetacyjnej SGGW. Siewki hodowano w kuwetach wypełnionych pełną, zmodyfikowaną pożywką Hoaglanda z dodatkiem NaCl. Stres solny znacznie zmniejszył zawartość chlorofilu w liściach siewek oraz wydajność fotosyntezy. Już po 2 godzinach zauważono pierwsze reakcje siewek na zastosowane zasolenie (wskaźnik Area oraz wskaźnik witalności PI spadły przy najwyższym zastosowanym zasoleniu). Z pracy wynika, że pomiar fluorescencji chlorofilu jest bardzo wartościową techniką, która daje szybko pewną informację na temat fazy fotosyntezy zależnej od promieniowania świetlnego. W tego typu badaniach obie techniki powinny być jednak stosowane, bowiem dostarczane przez nie informacje uzupełniają się i dają możliwość tylko pośredniej oceny wydajności fazy niezależnej od promieniowania świetlnego.
EN
The impact of salt stress (0, 60, 90, 120 and 180 mmol NaCl·dm⁻³) on performance of photosynthetic apparatus of maize seedlings (Zea mays cv. Nysa) growing under greenhouse conditions was studied. This was done by analyzing the sequences of plant reactions to salt stress within a short time (2, 6, 24, 72, 120, and 168 h after salt application). The activity of photosynthetic apparatus was examined through gas exchange and chlorophyll a fluorescence measurements. Seedlings grown in nutrient culture with proper salt concentration were applied. Salt treatment significantly inhibited chlorophyll content and photosynthetic performance of leaves. Already after 2 hours the first plant reactions to the higher salt concentrations were observed (Area above chlorophyll fluorescence curve and PS II Performance Index dropped). This work suggests that, measurement of chlorophyll a fluorescence is a very fast and valuable technique for obtaining fast qualitative information about light dependent photosynthetic phase. However, we recommend that in such type of experiments both techniques (gas exchange and chlorophyll a fluorescence) should be used as complementary information sources to understand the adaptive and/or tolerance mechanisms of salt stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

496

Numer

2

Opis fizyczny

s.545-558,wykr.,bibliogr.

Twórcy

autor
  • Katedra Fizjologii Roślin, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
autor
  • Katedra Fizjologii Roślin, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa

Bibliografia

  • Belkhodja R., Morales F., Abadia A., Gomez-Aparisi J., Abadia J. 1994. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiol. 104: 667-673.
  • Carter D.L. 1975. Problems of salinity in agriculture, w: Ecological studies, analysis and synthesis. Vol. 15, Plants in saline environments. A. Poljakoff-Mayber, J. Gale (red.). Springer-Verlag, New York: 26-35.
  • Chapman V.J. 1975. The salinity problem in general, its importance, and distribution with special reference to natural halophytes, w: Ecological studies, analysis and synthesis. Vol. 15. Plants in saline environments. A. Poljakoff-Mayber, J. Gale (red.). Springer-Verlag, New York: 7-24.
  • Cho J.W., Kim-Choong S., Cho J.W., Kim C.S. 1998. Effect of NaCl concentration on photosynthesis and mineral content of barley seedlings under solution culture. Korean J. Crop Sci. 43: 152-156.
  • Clark Alexander J., Landolt, Werner, Bucher, Jürg B., Strasser R.J., Reto J. 1999. Ozone exposure response of beech quantified with a chlorophyll a fluorescence performance index, w: Critical levels for ozone. Level II. Environmental Documentation 115, J. Fuhrer, B. Ackermann (red.), Swiss Agency for the Environment, Forests and Landscape, Bern, Switzerland: 177-180.
  • Congming L., Nianwei Q., Baoshan W., Jianhua Z. 2003. Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. J. Exp. Bot. 54: 851-860.
  • Czerwiński Z., Pracz J., Kolczyk K. 1990. The effect of chemical method use to snow remove on roads on soil and wells water. Man and Environments 14: 127-154.
  • Dong S., Hu C., Gao R., Wang Q. 1996. Effects of ecological factors, canopy structure and stand density on the net photosynthetic rate of maize. Photosynthetica 32: 97-103.
  • Edwards G.E., Baker N.R. 1993. Can CO₂ assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis. Photosynth. Res. 37: 89-102.
  • Fracheboud Y., Leipner J. 2003. The application of chlorophyll fluorescence to study light, temperature, and drought stress, w: Practical applications of chlorophyll fluorescence in plant biology. J.R. DeEll, P.M.A. Toivonen (red.), Kluwer Academic Publishers, Dordrecht: 125-150.
  • Fryer M.J., Andrews J.R., Oxborough K., Blowers D.A., Baker N.R. 1998. Relationship between CO₂ assimilation, photosynthetic electron transport, and active O₂ metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol. 116: 571-580.
  • Gale J., Kohl H.C., Hagan R.M. 1967. Changes in the water balance and photosynthesis of onion, bean and cotton plants under saline conditions. Plant. Physiol. 20: 408-420.
  • Garcia-Sanchez F.J., Carvajal M. 2002. Gas exchange, chlorophyll and nutrient contents in relation to Na⁺ and Cl⁻ accumulation in “Sunburst” mandarin graphed on different rootstocks. Plant Sci. 162: 705-712.
  • Genty B., Briantais J.M., Baker N.R. 1989. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87-92.
  • Kalaji M.H. 1990. Salinity as an ecological factor limiting plant production. International Seminar of Ecology, Smolonice - Czechoslovakia, 15-18 X 1990: 23-27.
  • Kalaji M.H., Pietkiewicz S. 1993. Salinity effects on plant growth and other physiological processes. Acta Physiol. Plant. 143: 89-124.
  • Kefu Z., Munns R., King R.W. 1991. Abscisic acid levels in NaCl-treated barley, cotton and saltbush. Aust. J. Plant Physiol. 18: 17-24.
  • Khan M.S.A., Hamid A., Salahuddin A.B.M., Quasem A., Karim M.A. 1997. Effect of sodium chloride on growth, photosynthesis and mineral ions accumulation of different types of rice (Oryza sativa L.). J. Agron. Crop Sci. 179: 149-161.
  • Kitao M., Utsugi H., Kuramoto S., Tabuchi R., Fujimoto K., Lihpai S. 2003. Lightdependent photosynthetic characteristics indicated by chlorophyll fluorescence in five mangrove species native to Pohnpei Island. Micronesia, Physiol. Plant. 117: 376-382.
  • Kolchevskii K.G., Kocharyan N.I., Koroleva O.Y. 1995. Effect of salinity on photosynthetic characteristics and ion accumulation in C3 and C4 plants of Ararat plain. Photosynthetica 31: 277-282
  • Kooten VAN O., Snell J.F.H. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25: 147-150.
  • Kovar M., Brestic M., Olsovska K. 2001. Chlforophyll a fluorescence as a bioindicator of the plant environmental stress. Acta Fytotechnica et Zootechnica 4, Special Number: 126-127.
  • Lakshmi A., Ramanjulu S., Veeranjaneyulu K., Sudhakar C. 1996. Effect of NaCl on photosynthesis parameters in two cultivars of mulberry. Photosynthetica 32: 285-289.
  • Leidi E.O., Silberbush M., Lips S.H. 1991. Wheat growth as affected by nitrogen type, pH and salinity. II. Photosynthesis and transpiration. J. Plant. Nutr. 14: 247-256.
  • Lichtenthaler H.K. 1996. Vegetation stress: an introduction to the stress concept in plants. J. Plant Physiol. 148: 4-14.
  • Lichtenthaler H.K., Rindere U. 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. Critic. Rev. Anal. Chem. 19: 29-85.
  • Luttus S., Kinnet J.M., Bouharmont J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) ciltivars differing in salinity resistance. Ann. Bot. 78: 389-398.
  • Maxwell K., Giles N. 2000. Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51: 659-668.
  • Mekkaoui E.M., Monneveux P., Damania A.B. 1989. Chlorophyll fluorescence as a predictive test for salt tolerance in cereals: preliminary results on durum wheat. Rachis. 8: 16-19.
  • Mishra S.K., Subrahmanyam D., Singhal G.S. 1991. Interrelationship between salt and light stress on primary processes of photosynthesis. J. Plant Physiol. 138: 92-96.
  • Munns R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment 25: 239-250.
  • Munns R., Husain S., Rivelli A.R., James R.A., Condon A.G., Lindsay M.P., Lagudah E.S., Schachtman D.P., Hare R.A. 2002. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant and Soil 247: 93-105.
  • Murkowski A. 2002. Oddziaływanie czynników stresowych na luminescencję chlorofilu w aparacie fotosyntetycznym roślin uprawnych. Monografia 61, Acta Agrophysica: 158 ss.
  • Nagy Z., Galiba G. 1995. Drought and salt tolerance are not necessarily linked: a study on wheat varieties differing in drought tolerance under consecutive water and salinity stress. J. Plant Physiol. 143: 106-111.
  • Nianwei Q., Qingtao L., Congming L. 2003. Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol. 159: 479.
  • Sage R.F. 2004. The evolution of C4 photosynthesis. New Phytologist 161: 341-370.
  • Schreiber U., Bilger W., Neubauer C. 1994. Chlorophyll fluorescence as a nonintrussive indicator for rapid assessment of in vivo photosynthesis, w: Ecophysiology of photosynthesis. E.D. Schulze, M.M. Cadwell (red.), Ecological studies 100: 49-70.
  • Shabala S.N., Shabala S.I., Martynenko A.I. Babourina O., Newman I.A. 2003. Salinity effect on bioelectric activity, growth, Na⁺ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Austr. J. Plant Physiol. 25: 609-616.
  • Sibole J.V., Montero E., Cabot C., Poschenrieder C., Barcelo J. 1998. Role of sodium in the ABA-mediated long-term growth response of bean to salt stress. Physiol. Plant. 104: 299-305.
  • Starck Z. 1983. Fizjologiczne aspekty reakcji roślin na zasolenie. Post. Nauk Rol. 2: 17-26.
  • Starck Z. 1995. Współzależność pomiędzy fotosyntezą i dystrybucją asymilatów a tolerancją roślin na niekorzystne warunki środowiska. Post. Nauk Rol. 3: 19-35.
  • Strasser R.J., Srivastava A., Tsimilli-Michael M. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples, w: Probing photosynthesis: mechanisms, regulation and adaptation. M. Yunus, U. Pathre, P. Mohanty (red.), Taylor, Francis, London, GB, Chapter 25: 445-483.
  • Sultana N., Ikeda T., Itoh R. 1999. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ. Exp. Bot. 43: 211-220.
  • Szabolcs I. 1994. Soils and salinisation, w: Handbook of plant and crop stress. M. Pessarakali (red.). Marcel Dekker, New York: 3-11.
  • Toker C., Gorham J., Cagirgan M. 1999. Assessment of response to drought and salinity stresses of barley (Hordeum vulgare L.) mutants. Cereal Res. Comm. 27: 411-418.
  • Yeo A.R., Capron S.J.M., Flowers T.J. 1985. The effect of salinity upon photosynthesis in rice (Oryza sativa L.): Gas exchange by individual leaves relation to their salt content. J. Exp. Bot. 36: 1240-1248.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ac5b8844-1ac3-4680-a127-739418d23aba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.