PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 60 | 4 |

Tytuł artykułu

Composite Phymatoderma from Neogene deep-marine deposits in Japan: Implications for Phanerozoic benthic interactions between burrows and the trace-makers of Chondrites and Phycosiphon

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Among composite trace fossils, one of the most common structures throughout the Phanerozoic are structures (e.g., dwelling trace, feeding trace) reworked by Chondrites and/or Phycosiphon. However, differences in the nature of the reworking behaviors of these two ichnogenera remain unknown. Thus, in this study, composite Phymatoderma specimens from the Neogene deep-marine Shiramazu Formation in Japan, particularly those reworked by Chondrites and Phycosiphon, were analyzed to reveal the specific conditions that might control the activities of these trace-makers. Phymatoderma reworked by Phycosiphon is significantly larger than non-reworked Phymatoderma, whereas Phymatoderma reworked by Chondrites shows no significant difference in burrow diameter compared with non-reworked Phymatoderma. The recognized size selectivity (i.e., preference for larger burrows) by the Phycosiphon trace-maker can be explained by considering the different feeding strategies of these two ichnogenera; namely deposit-feeding Phycosiphon-makers, which must have processed a significant mass of sediment to obtain sufficient organic matter, whereas chemosymbiotic Chondrites-producers did not require a lot of sediment to obtain nutrients. In order to test these interpretations, a dataset of Phanerozoic trace fossils reworked by Chondrites/Phycosiphon were compiled. Consequently, the Phycosiphon-pro-ducers' preference toward relatively larger burrows was recognized, quantitatively supporting the results of this study. The compilation also indicates that the burrow size might have become one of the important limiting factors for the Phycosiphon-producers that tried to rework the sediments within previous subsurface burrows, at least for 80 million years.

Wydawca

-

Rocznik

Tom

60

Numer

4

Opis fizyczny

p.1009-1020,fig.,ref.

Twórcy

autor
  • Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan

Bibliografia

  • Bednarz, M. and McIlroy, D. 2009. Three-dimensional reconstruction of "phycosiphoniform" burrows: Implications for identification of trace fossils in core. Palaeontologia Electronica 12: 13A.
  • Boudreau, B.P. 1997. Diagenetic Models and Their Implementation. 414 pp. Springer, New York.
  • Bromley, R.G. 1996. Trace Fossils: Biology, Taphonomy, and Applications. 361 pp. Chapman and Hall, London.
  • Bromley, R.G. and Ekdale, A.A. 1986. Composite ichnofabric and tiering of burrows. Geological Magazine 123: 59-65.
  • Bromley, R.G. and Frey, R.W. 1974. Redescription of trace fossil Gyro-lithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha. Bulletin of the Geological Society of Denmark 23: 311-336.
  • Buatois, L.A. and Mángano, M.G. 1992. La oxigenación como factor de control en la distribución de asociaciones de trazas fósiles, Formacion Kotick Point, Cretácico de Antártida. Ameghiniana 29: 69-84.
  • Buatois, L.A. and Mángano, M.G. 2011. Ichnology: Organism-Substrate Interactions in Space and Time. 370 pp. Cambridge University Press, New York.
  • Buatois, L.A., Mángano, M.G., Alissa, A., and Carr, T.R. 2002. Sequence stratigraphic and sedimentologic significance of biogenic structures from a late Paleozoic marginal- to open-marine reservoir, Morrow Sandstone, subsurface of southwest Kansas, USA. Sedimentary Geology 152: 99-132.
  • Burdige, D.J. 2006. Geochemistry of Marine Sediments. 609 pp. Princeton University Press, New Jersey.
  • Carmona, N.B., Buatois, L.A., Mángano, M.G., and Bromley, R.G. 2008. Ichnology of the Lower Miocene Chenque Formation, Patagonia, Argentina: animal-substrate interactions and the Modern Evolutionary Fauna. Ameghiniana 45: 93-122.
  • Druffel, E.R.M., Williams, P.M., Bauer, J.E. and Ertel, J.R. 1992. Cycling of dissolved and particulate organic matter in the open ocean. Journal of Geophysical Research 97: 15639-15659.
  • Ehrenberg, K. 1941. Über einige Lebensspuren aus dem Oberkreideflysch von Wien und Umgebung. Palaeobiologica 7: 282-313.
  • Ekdale, A.A. and Bromley, R.G. 1991. Analysis of composite ichnofabrics: An example in Uppermost Cretaceous chalk of Denmark. Palaios 6: 232-249.
  • Ekdale, A.A. and Lewis, D.W. 1991. Trace fossils and paleoenvironmental control of ichnofacies in a late Quaternary gravel and loess fan delta complex, New Zealand. Palaeogeography, Palaeoclimatology, Palae-oecology 81: 253-279.
  • Falkowski, P.G., Katz, M.E., Knoll, A.H., Quigg, A., Raven, J.A., Schof-ield, O., and Taylor, F.J.R. 2004. The evolution of modern eukaryotic phytoplankton. Science 305: 354-360.
  • Fu, S. 1991. Funktion, Verhalten und Einteilung fucoider und lophocteniider Lebensspuren. Courier Forschung-Institut Senckenberg 135: 1-79.
  • García-Ramos, J.C., Piňuela, L. and Rodríguez-Tovar, F.J. 2011. Post-Workshop Field Trip Guide of the XI International Ichnofabric Workshop. 89 pp. Museo del Jurásico de Asturias (MUJA), Colunga.
  • Gerard, J. and Bromley, R. 2008. Ichnofabrics in Clastic Sediments: Applications to Sedimentological Core Studies. 100 pp. J. Gerard, Madrid.
  • Gingras, M.K., Pickerill, R., and Pemberton, S.G. 2002. Resin cast of modern burrows provide analogs for composite trace fossils. Palaios 17: 206-211.
  • Goldring, R., Pollard, J.E., and Taylor, A.M. 1991. Anconichnus horizontalis: A perspective ichnofabric-forming trace fossil in post-Paleozoic offshore siliciclastic facies. Palaios 6: 250-263.
  • Haq, B.U. and Takayama, T. 1984. Neogene calcareous nannoplankton datum planes and their calibration to magnetostratigraphy. In: N. Ikebe and R. Tsuchi (eds.), Pacific Neogene Datum Planes, 27-33. University of Tokyo Press, Tokyo.
  • Hartnett, H.E., Keil, R.G., Hedges, J.I., and Devol, A.H. 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391: 572-574.
  • Henriksen, K., Rasmussen, M.B., and Jensen, A. 1983. Effect of bioturba-tion in microbial nitrogen transformations in the sediment and fluxes of ammonium and nitrate to the overlying water. Ecological Bulletins 35: 193-205.
  • Izumi, K. 2012. Formation process of the trace fossils Phymatoderma granulata in the Lower Jurassic black shale (Posidonia Shale, southern Germany) and its paleoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 353-355: 116-122.
  • Izumi, K. 2013. Geochemical composition of faecal pellets as an indicator of deposit-feeding strategies in the trace fossil Phymatoderma. Lethaia 46: 496-507.
  • Izumi, K. 2014. Utility of geochemical analysis of trace fossils: Case studies using Phycosiphon incertum from the Lower Jurassic shallow-marine (Higashinagano Formation, southwest Japan) and Pliocene deep-marine deposits (Shiramazu Formation, central Japan). Ichnos 21: 62-72.
  • Jorgensen, B.B. 1977. Bacterial sulfate reduction within reduced micron-iches of oxidized marine sediments. Marine Biology 41: 7-17.
  • Jumars, A.P., Mayer, M.L., Deming, A.J., Baross, A.J., and Wheatcroft, A.R. 1990. Deep-sea deposit-feeding strategies suggested by environmental and feeding constraints. Philosophical Transactions of Royal Society of London A 331: 85-101.
  • Kędzierski, M. and Uchman, A. 2001. Ichnofabrics of the Upper Cretaceous marlstones in the Opole region, southern Poland. Acta Geologi-ca Polonica 51: 81-91.
  • Kern, J.P. 1978. Paleoenvironment of new trace fossils from the Eocene Mission Valley Formation, California. Journal of Paleontology 52: 186-194.
  • Knaust, D. and Bromley, R.G. 2012. Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology 64. 960 pp. Elsevier, Amsterdam.
  • Kotake, N. 1988. Upper Cenozoic marine sediments in southern part of the Boso Peninsula, central Japan [in Japanese with English abstract]. The Journal of the Geological Society ofJapan 94: 187-206.
  • Kotake, N. 1989. Paleoecology of the Zoophycos producers. Lethaia 22: 327-341.
  • Kotake, N. 1990. Mode of ingestion and egestion of the Chondrites and Zoophycos producers [in Japanese with English abstract]. The Journal of the Geological Society of Japan 96: 859-868.
  • Kotake, N. 1991. Packing process for the filling material in Chondrites. Ichnos 1: 277-285.
  • Lalonde, S.V., Dafoe, L.T., Pemberton, S.G., Gingras, M.K., and Kon-hauser, K.O. 2010. Investigating the geochemical impact of burrowing animals: Proton and cadmium absorption onto the mucus-lining of Ter-ebellid polychaete worms. Chemical Geology 271: 44-51.
  • Leszczyński, S. 2004. Bioturbation structures of the Kropivnik Fucoid Marls (Campanian-lower Maastrichtian) of the Huwniki-Rybotycze area (Polish Carpathians). Geological Quaterly 48: 35-60.
  • Lopez, G. and Levinton, J.S. 1987. Ecology of deposit-feeding animals in marine sediments. The Quarterly Review of Biology 62: 235-260.
  • Maeda, H. 1987. Taphonomy of ammonites from the Cretaceous Yezo Group in the Tappu area, northwestern Hokkaido, Japan. Transactions and Proceedings of the Palaeontological Society ofJapan, New Series 148: 285-305.
  • Maeda, H., Kumagae, T., Matsuoka, H., and Yamazaki, Y. 2010. Taphonomy of large Canadoceras (Ammonoid) shells in the Upper Cretaceous series in south Sakhalin, Russia. Paleontological Research 14: 56-68.
  • Matsumoto, T. 1954. The Cretaceous System in the Japanese Islands. 324 pp. Japan Society for Promotion of Science, Tokyo.
  • Mazumdar, A., Joshi, R.K., and Kocherla, M. 2011. Occurrence of faecal pellet-filled simple and composite burrows in cold seep carbonate: A glimpse of a complex benthic ecosystem. Marine Geology 289: 117-121.
  • Miller, W., III 2007. Trace Fossils: Concepts, Problems, Prospects. 632 pp. Elsevier, Amsterdam.
  • Miller, W., III and Aalto, K.R. 1998. Anatomy of a complex trace fossil: Phymatoderma from Pliocene bathyal mudstone, northwestern Ecuador. Paleontological Research 2: 266-274.
  • Miller, W., III and Vokes, E.H. 1998. Large Phymatoderma in Pliocene slope deposits, Northwestern Ecuador: Associated ichnofauna, fabrication, and behavioral ecology. Ichnos 6: 23-45.
  • Olivero, E.B. and López Cabrera, M.I. 2013. Euflabella n. igen.: Complex horizontal spreite burrows in Upper Cretaceous-Paleogene shallow-marine sandstones of Antarctica and Tierra del Fuego. Journal of Paleontology 87: 413-426.
  • Petrash, D.A., Lalonde, S.V., Gingras, M.K., and Konhauser, K.O. 2011. A surrongate approach to study the chemical reactivity of mucus burrow linings in marine sediments. Palaios 26: 594-600.
  • Pickerill, R.K. 1994. Nomenclature and taxonomy of invertebrate trace fossils. In: S.K. Donovan (ed.), The Palaeobiology of Trace Fossils, 311-336. John Wiley and Sons, New Jersey.
  • Pickerill, R.K. and Narbonne, G.M. 1995. Composite and compound ichno-taxa: A case example from the Ordovician of Quebec, eastern Canada. Ichnos 4: 53-69.
  • Rabouille, C.R. and Gaillard, J.-F. 1991. A coupled model representing the deep-sea organic carbon mineralization and oxygen consumption in surficial sediments. Journal of Geophysical Research 96: 2761-2776.
  • Reise, K. 1985. Tidal Flat Ecology: An Experimental Approach to Species Interactions. Ecological Studies 54. 208 pp. Springer, Berlin.
  • Rodríguez-Tovar, F. J. and Uchman, A. 2006. Ichnological analysis of the Cretaceous-Palaeogene boundary interval at the Caravaca section, SE Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 242: 313-325.
  • Rodríguez-Tovar, F.J., Uchman, A., Alegret, L. and Molina, E. 2011a. Impact of the Paleocene-Eocene Thermal Maximum on the macroben-thic community: Ichnological record from the Zumaria section, northern Spain. Marine Geology 282: 178-187.
  • Rodríguez-Tovar, F. J., Uchman, A., Orue-Etxebarria, X., Apellaniz, E. and Baceta, J.I. 2011b. Ichnological analysis of the Bidart and Sopelana Cretaceous/Paleogene (K/Pg) boundary sections (Basque Basin, W Pyrenees): Refining eco-sedimentary environment. Sedimentary Geology 234: 42-55.
  • Romankevich, E.A. 1984. Geochemistry of Organic Matter in the Ocean. 334 pp. Springer, Berlin.
  • Rotnicka, J. 2005. Ichnofabrics of the Upper Cretaceous fine-grained rocks from the Stołowe Mountains (Sudetes, SW Poland). Geological Qua-terly 49: 15-30.
  • Sarmiento, J.L. and Gruber, N. 2006. Ocean Biogeochemical Dynamics. 503 pp. Princeton University Press, New Jersey.
  • Schloteim, E.F., von 1822. Nachträge zurPetrefactenkunde. 100 pp. Becker, Gotha.
  • Seilacher, A. 1954. Die Geologische Bedeutung Fossiler Lebensspuren. Zeitschrift der Deutschen Geologischen Gesellschaft 105: 214-227.
  • Seilacher, A. 1958. Zur ökologische n Charakteristik von Flysch und Molasse. Eclogae GeologicaeHelvetiae 51: 1062-1078.
  • Seilacher, A. 1967a. Bathymetry of trace fossils. Marine Geology 5: 413428.
  • Seilacher, A. 1967b. Fossil behaviour. Scientific American 217: 72-80.
  • Seilacher, A. 1990. Aberrations in bivalve evolution related to photo- and chemosymbiosis. Historical Biology 3: 289-311.
  • Seilacher, A. 2007. Trace Fossil Analysis. 226 pp. Springer, Berlin.
  • Seiter, K., Hensen, C., Schröter, J., and Zabel, M. 2004. Organic carbon content in surface sediments: Defining regional provinces. Deep-sea Research I 51: 2001-2026.
  • Suess, E. 1980. Particulate organic carbon flux in the ocean: surface productivity and oxygen utilization. Nature 288: 260-263.
  • Uchman, A. 1999. Ichnology of the Rhenodanubian Flysch (Lower Cretaceous-Eocene) in Austria and Germany. Beringeria 25: 67-173.
  • Uchman, A. 2003. Trends in diversity, frequency and complexity of grapho-glyptid trace fossils: Evolutionary and palaeoenvironmental aspects. Pa-laeogeography, Palaeoclimatology, Palaeoecology 192: 123-142.
  • Uchman, A. 2004. Phanerozoic history of deep-sea trace fossils. In: D. McIlroy (ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society Special Publication 228: 125-139.
  • Uchman, A. 2007. Deep-sea ichnology: development of major concepts. In: W. Miller III (ed.), Trace Fossils: Concepts, Problems, Prospects, 248-267. Elsevier, Amsterdam.
  • Uchman, A. and Gaździcki, A. 2010. Phymatoderma melvillemsis isp. nov. and other trace fossils from the Cape Melville Formation (Lower Miocene) of King George Island, Antarctica. Polish Polar Research 31: 83-99.
  • Uchman, A, Caruso, C., and Sonnino, M. 2012. Taxonomic review of Chondrites affinis (Sternberg, 1833) from Cretaceous-Neogene offshore-deep-sea Tethyan sediments and recommendation for its further use. Rivista Italiana di Paleontologia e Stratigrafia 118: 313-324.
  • Uchman, A., Rodríguez-Tovar, F.J., and Oszczypko, N. 2013a. Exceptionally favourable life conditions for macrobenthos during the Late Ceno-manian OAE-2 event: Ichnological record from the Bonarelli Level in the Grajcarek Unit, Polish Carpathians. Cretaceous Research 46: 1-10.
  • Uchman, A., Rodríguez-Tovar, F.J., Machaniec, E., and Kędzierski, M. 2013b. Ichnological characteristics of Late Cretaceous hemipelagic and pelagic sediments in a submarine high around the OAE-2 event: A case from the Rybie section, Polish Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology 370: 222-231.
  • Wetzel, A. 1991. Ecologic interpretation of deep-sea trace fossil communities. Palaeogeography, Palaeoclimatology, Palaeoecology 85: 47-69.
  • Wetzel, A. 2010. Deep-sea ichnology: Observations in modern sediments to interpret fossil counterparts. Acta GeologicaPolonica 60: 125-138.
  • Wetzel, A. and Bromley, R.G. 1994. Phycosiphon incertum revisited: An-conichnus horizontalis is junior subjective synonym. Journal of Paleontology 68: 1396-1402.
  • Wetzel, A. and Uchman, A. 2001. Sequential colonization of muddy tur-bidites in the Eocene Beloveža Formation, Carpathians, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 168: 171-186.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-aa48f98e-8a56-40fc-aead-822c1d10ff7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.