PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 3 |

Tytuł artykułu

Phytoremediation of polycyclic aromatic hydrocarbons in soils artificially polluted using plant-associated-endophytic bacteria and Dactylis glomerata as the bioremediation plant

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The reaction of soil microorganisms to the contamination of soil artificially polluted with polycyclic aromatic hydrocarbons (PAHs) was evaluated in pot experiments. The plant used in the tests was cock’s foot (Dactylis glomerata). Three different soils artificially contaminated with PAHs were applied in the studies. Three selected PAHs (anthracene, phenanthrene, and pyrene) were used at the doses of 100, 500, and 1000 mg/kg d.m. of soil and diesel fuel at the doses of 100, 500, and 1000 mg/kg d.m. of soil. For evaluation of the synergistic effect of nitrogen fixing bacteria, the following strains were selected: associative Azospirillum spp. and Pseudomonas stutzerii. Additionally, in the bioremediation process, the inoculation of plants with a mixture of the bacterial strains in the amount of 1 ml suspension per 500 g of soil was used. Chamber pot-tests were carried out in controlled conditions during four weeks of plant growth period. The basic physical, microbiological and biochemical properties in contaminated soils were determined. The obtained results showed a statistically important increase in the physical properties of soils polluted with PAHs and diesel fuel compared with the control and also an important decrease in the content of PAHs and heavy metals in soils inoculated with Azospirillum spp. and P.stutzeri after cock’s foot grass growth. The bioremediation processes were especially intensive in calcareous rendzina soil artificially polluted with PAHs.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

3

Opis fizyczny

p.241-252,fig.,ref.

Twórcy

autor
  • Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation - State Research Institute, Pulawy, Poland
autor
  • Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Pulawy, Poland

Bibliografia

  • Abhilash P.C., S. Srivastava and N. Singh. 2011. Comparative bioremediation potential of four rhizospheric microbial species against lindane. Chemosphere 82 (1): 56–63.
  • Ahammed G.J., S. Zhang, K. Shi, Y.-H. Zhou, and J.Q. Yu. 2012. Brassinosteroid improves seed germination and early development of tomato seedling under phenanthrene stress. Plant Growth Regul 68: 87–96.
  • Anderson T.A., E.A. Guthire and B.T. Walton. 1993. Bioremediation in the rhizosphere: plant roots and associated microbes clean contaminates soil. Environ. Sci. Technol. 27: 2630–2636.
  • Andreoni V. and L. Gianfreda. 2007. Bioremediation and monitoring of aromatic-polluted habitats. Appl. Microbiol. Biotechnol. 76: 287–308.
  • Caside L., D. Klein and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. 98: 371–376.
  • Cerniglia C. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351–368.
  • Chauhan A., Fazlurrahman, J.G. Oakeshott and R.K. Jain. 2008. Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J. Microbiol. 48: 95–113.
  • Ciesielczuk T., G. Kusza, J. Poluszyńska and K. Kochanowska. 2014. Pollution of Flooded arable soils with heavy metals and polycyclic aromatic hydrocarbons (PAHs). Water Air Soil Pollut. 225(10): 2145.
  • Couillerot O., A. Ramírez-Trujillo, V. Walker, A. von Felten, J. Jansa, M. Maurhofer, G. Défago, C. Prigent-Combaret, G. Comte, J. Caballero-Mellado and Y. Moënne-Loccoz. 2013. Comparison of prominent Azospirillum strains in Azospirillum-Pseudomonas-Glomus consortia for promotion of maize growth. Appl. Microbiol. Biotechnol. 97(10): 4639–4649.
  • Dominiguez-Rosado E., and J. Pichtel. 2004. Phytoremediation of soil contaminated with used motor oil: II. Greenhouse studies. Environ. Engin. Sci. 21(2): 169–180.
  • Gałązka A. 2008. PhD Thesis (Assessment of bacteria Azospirillum spp. and Pseudomonas stutzeri usefulness for the bioremediation of soils polluted with aromatic hydrocarbons). IUNG – PIB Puławy, Poland (in Polish).
  • Gałązka A., Król M. and A. Perzyński. 2012. The efficiency of rhizosphere bioremediation with Azospirillum sp. and Pseudomonas stutzeri in soils freshly contaminated with PAHs and diesel fuel. Pol. J. Environ. Stud. 21(2): 345–353.
  • Gogoi B.K., N.N. Dutta, P. Goswami and T.R.K. Mohan. 2003. A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill. Adv. Environ. Res. 7: 757–782.
  • Günther T., U. Dornberger and W. Fritsche. 1996. Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere. 33: 203–215.
  • Huang X.D., Y. El-Alawi, D.M. Penrose, B.R. Glick and B.M. Greenberg. 2004. Responses of three grass species to creosote during phytoremediation. Environ. Poll. 130: 453–463.
  • Johnsen A.R., S. Schmidt, T.K. Hybholt, S. Henriksen, C.S. Jacobsen and O. Andersen. 2007. Strong impact on the Polycyclic aromatic hydrocarbon (PAH) – degrading community of a PAH-polluted soilbut marginal effect on PAH degradation when priming with bioremediated soil dominated by Mycobacterium. Appl. Environ. Microbiol. 73(5): 1474–1480.
  • Joner E.J., A. Johannes, A.P. Loibne, M.A. de la Cruz, O.H. Szolar, J.M. Portal and C. Leyval. 2007. Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environ. Sci. Technol. 35: 2773–2777.
  • Jones J.G. and M.A. Edington. 1968. An ecological survey of hydrocarbon – oxidazing microorganisms. J. Gen. Microbiology 52: 381–390.
  • Kabata-Pendias A., M. Piotrowska, T. Motowicka-Terelak, B. Maliszewska-Kordybach, K. Filipiak, A. Krakowiak and Cz. Pietruch. 1995. Fundamentals of the assessment of chemical soil pollution; heavy metals, sulphur, and PAHs. Bibl. Monitoringu Środowiska Warszawa (in Polish).
  • Kang S.H. and B.S. Xing. 2006. Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environ. Sci. Technol. 39: 134–140.
  • Król M.J., A. Perzyński and A. Leśniak. 2007. Pseudomonas stutzeri – bacteria colonizing the plants endoryzoshere (in Polish). Postępy Nauk Rol. 1: 81–91.
  • Lee J.H. 2013. An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol. Bioproc. Eng. 18: 431–439.
  • Leigh M.B., J.S. Fletcher, X. Fu and F.J. Schmitz. 2002. Root turnover: an important substrate of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Tech. 36: 1579–1583.
  • Liang Meng L., M. Qiao and H. Peter. 2011. Phytoremediation efficiency of a PAH-contaminated industrial soil using ryegrass, white clover, and celery as mono- and mixed cultures. H. Arp. J. Soils Sediments 11:482–490.
  • Liste H.H. and M. Aleksander. 2000. Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40: 11–14.
  • Liste H.H. and D. Felgentreu. 2006. Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl. Soil Ecol. 31: 43–52.
  • Ma B., H. Chen, Y. He, H. Wang and J. Xu. 2010. Evaluation of toxicity risk of polycyclic aromatic hydrocarbons (PAHs) in crops rhizosphere of contaminated field with sequential extraction. J. Soils Sediments 10:955–963.
  • Mahmoud H.M., P. Suleman, N.A. Sorkhoh, S. Salamah and S.R. Samir. 2011. The potential of established turf cover for cleaning oily desert soil using rhizosphere technology. Int. J. Phytoremediat. 13(2): 156–67.
  • Martin J.P. 1950. Use of acid, rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Science, 69: 215–232.
  • Muratova A., T. Hubner, S. Tischer, O. Turkovskaya, M. Moder and P. Kuschk. 2003. Plant-rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. Int. J. Phytoremediat. 5(2):137–151.
  • Naiman A.D., A. Latrónico and I.E. García de Salamone. 2009. Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: Impact on the production and culturable rhizosphere microflora. Eur. J. Soil Biol. 45: 44–51.
  • Okon, Y. and J. Vanderleyden. 1997. Root-Associated Azospirillum species can stimulate plant. ASM News 63: 366–370.
  • Order by the Minister of the Environment on soil quality standards and ground quality standards. 2002. Dz.U. Nr 165 poz. 1359 (in Polish). http://isap.sejm.gov.pl/DetailsServlet?id=WDU20021651359, 2015.08.22.
  • Ouvrard S., E.D. Chenot, J.F. Masfaraud and Ch. Schwartz. 2013. Long-term assessment of natural attenuation: statistical approach on soils with aged PAH contamination. Biodegradation 24: 539–548.
  • Parales R.E., N.C. Bruce, A. Schmid and L.P. Wackett. 2002. Biodegradation, Biotransformation, and Biocatalysis (B3). Appl. Environ. Microbiol. 68(10): 4699–4709.
  • Parrish Z.D., M.K. Banks and A.P. Schwab. 2005. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ. Poll. 137: 187–197.
  • Pizzul L., M. del Pilar Castillo and J. Stenström. 2007. Effect of rapeseed oil on the degradation of polycyclic aromatic hydrocarbons in soil by Rhodococcus wratislaviensis. Int. Biodet. Biodegr. 59: 111–118.
  • Siciliano S.D. and J.J. Germida. 1998. Mechanisms of phytoremediation: Biochemical and ecological interactions between plants and bacteria. Environ. Rev. 6: 65–79.
  • Smith M.J., T.H. Flowers, H.J. Duncan and J. Alder. 2006. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ. Poll. 141: 519–525.
  • Steenhoudt O. and J. Vanderleyden. 2000. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects, FEMS Microbiol. Rev. 24: 487–506.
  • Tabatabai M. A. and J.M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1: 301–307.
  • Tejeda-Agredano M.C., S. Gallego, J. Vila, M. Grifoll, J.J. Ortega-Calvo and M. Cantos. 2013. Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biol. Biochem. 57: 830–840.
  • Wallace R. and A. Lockhead. 1950. Qualitative studies of soil microorganisms. Aminoacid requirements of rhizosphere bacteria. Can. J. Research. section C 28: 1–6.
  • Walton B.T., A.M. Hoylman, M.M. Perez, T.A. Anderson, T.R. Johnson, E.A. Guthrie and R.F. Christman. 1994. Bioremediation through Rhizosphere Technology, pp. 82–92. In: Anderson T.A. and J.R. Coats (eds). Am. Chem. Soc. Washington.
  • Yu W., S. Kuang and L. Zhao. 2013. Uptake, accumulation and translocation of polycyclic aromatic hydrocarbons by winter wheat cultured on oily sludge-amended soil. Chin. J. Geochem. 32: 295–302.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-aa00d202-2a6e-4b57-87ab-cce56ad3755a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.