PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 57 | 3 |

Tytuł artykułu

Is footprint shape a good predictor of arboreality in sigmondontine rodents from a neotropical savanna?

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We investigated the relation between the footprint shape of the fore and hind feet of sigmodontine rodents and their levels of arboreal activity. Footprint shape was obtained by analyzing the impressions left by identified animals captured in the field after being forced to pass through ink-tracking tunnels or by pressing their previously inked feet on a paper sheet. We used geometric morphometric techniques that use superimposition of landmarks (centers of the pads) to obtain footprint shape variables, which were reduced using multivariate analysis (principal component analysis). Arboreal activity was inferred on the basis of the proportions of individuals captured in arboreal traps (1.5–2.5 m height). Regression analysis of body size and the variable that best represented the footprint shapes (first principal component—PC1) did not indicate significant allometric effects on such shapes. We did not detect any significant phylogenetic effects on the arboreal activity of the rodents, either. The results indicated that the PC1 concerning footprint shapes of ten sigmodontine rodents efficiently reflects the degree of use of arboreal strata by these animals. The species studied showed different levels of arboreal activity and their hind footprints (r 2 = 0.94) were better indicators of arboreality than the fore footprints (r 2 = 0.53). These findings suggest a likely trade off for the fore feet functions. Such functions are probably not strictly related to locomotion. Other biomechanical functions (e.g., shock absorption) and/or manipulation (e.g., food manipulation and grooming) may exert relatively greater influence on the shape of fore feet.

Wydawca

-

Czasopismo

Rocznik

Tom

57

Numer

3

Opis fizyczny

p.261-267,fig.,ref.

Twórcy

  • Pos-graduacao em Ecologia, Universidade de Brasília, Brasília, DF, Brazil
  • Pos-graduacao em Ecologia, Universidade de Brasília, Brasília, DF, Brazil
  • Laboratório de Parasitologia e Biologia de Vetores, Universidade de Brasília, Brasília, DF, Brazil
  • Departamento de Sistematica e Ecologia, Universidade Federal da Paraíba, Joao Pessoa, PB, Brazil
  • Laboratorio de Ecologia de Vertebrados, Departamento de Ecologia, Instituto de Ciencias Biologicas, CP 04457, Universidade de Brasília (UnB), Brasília, DF, 70919-970, Brazil
autor
  • Laboratorio de Ecologia de Vertebrados, Departamento de Ecologia, Instituto de Ciencias Biologicas, CP 04457, Universidade de Brasília (UnB), Brasília, DF, 70919-970, Brazil

Bibliografia

  • Argot C (2001) Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 247:51–79
  • Argot C (2002) Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 253:76–108
  • Astúa D (2009) Evolution of scapula and shape in didelphid marsupials (Didelphimorphia: Didelphidae). Evolution 63:2438–2456
  • Bakker VJ, Kelt DA (2000) Scale-dependent patterns in body size distributions of neotropical mammals. Ecology 81:3530–3547
  • Böhning-Gases K, Schuda MD, Helbig AJ (2003) Weak phylogenetic effects on ecological niches of Sylvia warblers. J Evol Biol 16:956–965
  • Bonvicino CR, Oliveira JA, D’Andrea PS (2008) Guia dos Roedores do Brasil, com chaves para gêneros baseadas em caracteres externos. Centro Pan-Americano de Febre Aftosa - OPAS/OMS, Rio de Janeiro, p 120
  • Camargo NF, Gurgel-Gonçalves R, Palma ART (2008) Variação morfológica de pegadas de roedores arborícolas e cursoriais do Cerrado. Rev Bras Zool 25:696–704
  • Candela AM, Picasso MBJ (2008) Functional anatomy of the limbs of Erethizontidae (Rodentia, Caviomorpha): indicators of locomotor behavior in Miocene porcupines. J Morphol 269:552–593
  • Carrano MT (1997) Morphological indicators of foot posture in mammals: a statistical and biomechanical analysis. Zool J Linn Soc 127:77–104
  • Eisenberg JF (1981) The mammalian radiation: an analysis of trends in evolution, adaptation and behavior. Univ. Chicago Press, Chicago, p 610
  • Hamrick MW (1998) Functional and adaptive significance of primate pads and claws: evidence from New World anthropoids. Am J Phys Anthropol 106:113–127
  • Harmon LJ, Glor RE (2010) Poor statistical performance of the Mantel test in phylogenetic comparative analyses. Evolution 64:2173–2178
  • Hershkovitz P (1969) The evolution of mammals on southern continents. VI. The recent mammals of the neotropical region: a zoogeographical and ecological review. Q Rev Biol 44:1–70
  • Hildebrand M (1985) Digging of quadrupeds. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Belknap, Cambridge, pp 89–109
  • Ji Q, Luo Z, Yuan CX, Wible JR, Zhang JP, Georgi JA (2002) The earliest known eutherian mammal. Nature 416:816–822
  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam
  • Legendre P, Lapointe F-J, Casgrain P (1994) Modeling brain evolution from behavior: a permutational regression approach. Evolution 48:1487–1499
  • Lemen C (1980) Relationship between relative brain size and climbing hability in Peromyscus. J Mammal 61:360–364
  • Lull RS (1904) Adaptations to aquatic, arboreal, fossorial and cursorial habits in mammals IV Cursorial adaptations. Am Nat 38:1–11
  • Malcom JR (1995) Forest structure and the abundance and diversity of Neotropical small mammals. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic, London, pp 179–197
  • Marinho-Filho J, Rodrigues FHG, Juarez KM (2002) The Cerrado mammals: diversity, ecology, and natural history. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 266–284
  • McEvoy JS (1982) Comparative myology of the pectoral and pelvic appendages of the North American porcupine (Erethizon dorsatum) and the prehensile-tailed porcupine (Coendou prehensilis). Bull Am Mus Nat Hist 173:337–421
  • Meier PT (1983) Relative brain size within the North American Sciuridae. J Mammal 64:642–647
  • Miranda AC, Miranda HS, Dias IFO, Dias BFS (1993) Soil and air temperatures during provocated cerrado fires in central Brazil. J Trop Ecol 9:313–320
  • Nitikman LZ, Mares MA (1987) Ecology of small mammals in a gallery forest of central Brazil. Ann Carneg Mus 56:75–95
  • Palma ART (2002) Estrutura de comunidades de pequenos mamíferos no Cerrado. Doctorate Dissertation, Universidade de Brasília
  • Palma ART, Gurgel-Gonçalves R (2007) Morphometric identification of small mammal footprints from ink tracking tunnels in the Brazilian Cerrado. Rev Bras Zool 24:333–343
  • Pardini R, Umetsu F (2006) Pequenos mamíferos não-voadores da Reserva Florestal do Morro Grande—distribuição das espécies e da diversidade em uma área de Mata Atlântica. Biota Neotrop 6:1–22
  • Ribeiro JF, Walter BMT (1998) Fitofisionomias do Cerrado. In: Sano SM, Almeida SP (eds) Cerrado: ambiente e flora. EMBRAPA-CPAC, Planaltina-DF, pp 87–166
  • Rivas BA, Linares OJ (2006) Cambios en la forma de la pata posterior entre roedores Sigmodontinos según su locomoción y hábitat. Mastozool Neotrop 13:205–215
  • Rivas-Rodríguez BA, D’Elía G, Linares O (2010) Diferenciación morfológica en sigmodontinos (Rodentia: Cricetidae) de las Guayanas Venezolanas con relación a su locomoción y habitat. Mastozool Neotrop 17:97–109
  • Rohlf FJ (1999a) TPSDIG, v.1.18. http://​life.​bio.​sunysb.​edu/​morph. Accessed 21 February 2011
  • Rohlf FJ (1999b) TPSREWL, v.1.18. http://​life.​bio.​sunysb.​edu/​morph. Accessed 21 February 2011
  • Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132
  • Samuels JX, Valkenburgh BV (2008) Skeletal indicators of locomotor adaptations in living and extinct rodents. J Morphol 269:1387–1411
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.​1093/​molbev/​msr121
  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
  • Vieira EM (1998) A technique for trapping small mammals in the forest canopy. Mammalia 62:306–310
  • Vieira EM, Monteiro-Filho ELA (2003) Vertical stratification of small mammals in the Atlantic rain forest of south-eastern Brazil. J Trop Ecol 19:501–507
  • Voss RS (1988) Systematics and ecology of ichthyomyine rodents (Muroidea): patterns of morphological evolution in a small adaptive radiation. Bull Am Mus Nat Hist 188:259–493
  • Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a9fa8544-24ef-46d0-8990-39fbd4c1b839
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.