PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 34 | 2 |

Tytuł artykułu

Intensification of biogas production in the process of co-fermentation of silages from perennial grasses blended with maize or waste from the agro-food industry

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to determine the possibility of increasing the efficiency of biogas production from perennial grasses by their co-fermentation with maize or waste from the agro-food industry. Biomass of miscanthus, Spartina, switchgrass, and big bluestem was harvested on October (second harvest, autumn regrowth) and ensiled. Silages were made also from sugar beet pulp and particular grasses mixed with maize or apple pomace in the weight ratio of 50:50. The silages produced were of good quality. The methane fermentation of silages from grasses blended with maize or particular waste enabled achieving from a few to several dozen percent higher biogas production compared to the mono-fermentation of grass silages. It was concluded that co-digestion of perennial grass silages with apple pomace or beet pulp is an useful method for post-production waste utilization. Moreover, using perennial grasses for biogas production as blends with maize affords an opportunity for the partial replacement of maize as the main substrate with no loss of biogas and methane yield

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

2

Opis fizyczny

p.233-243,fig.,ref.

Twórcy

  • Department of Fermentation Technology, Prof. W. Dabrowski Institute of Agricultural and Food Biotechnology, Warsaw, Poland
autor
  • Department of Plant Physiology, Warsaw University of Life Sciences, Warsaw, Poland

Bibliografia

  • DĘBOWSKI M., DUDEK M., ZIELIŃSKI M., GRALA A. 2013. Technological effectiveness of methane fermentation of prairie cordgrass (Spartina pectinata). Proceedings of ECOpole, 7(1): 49–58.
  • DEMIRCIG., DEMIRER G. 2004. Effect of initial COD concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatability of broiler and cattle manure. Bioresource Technology, 93: 109–117.
  • DUBROVSKIS V., KOTELENCECS V., CELMS A., ZABOROVSKISE. 2012. Co-fermentation of biomass with high content of lignocelluloses for biogas production. In: Conference materials. Renewable energy and energy efficiency. Latvia University of Agriculture, Jelgawa, pp. 121–126.
  • DULCET E., DORSZEWSKI P., KASZKOWIAK J., BOROWSKI S., RAMA R., BUJACZEK R., CHOJNACKI J.2011. Analiza jakości kiszonek z wysłodków buraczanych sporządzonych przy użyciu prasy zwijającej do materiałów rozdrobnionych. Acta Sci. Pol., Technica Agraria, 10(3–4): 19–26.
  • FRĄC M., ZIEMIŃSKI K. 2012. Methane fermentation process for utilization of organic waste. Inter-national Agrophysics, 26(3): 317–330.
  • FRIGON J.C., MEHTA P., GUIOT S. 2012. Impact of mechanical, chemical and enzymatic pre-treat-ments on the methane yield from the anaerobic digestion of switchgrass. Biomass and Bioener-gy, 36: 1–11.
  • FUGOL M., PILARSKI K. 2011. Burak cukrowy jako substrat do biogazowni. Inżynieria Rolnicza, 5(130): 63–71.
  • GELEGENIC J., GEORGAKAKIS D., ANGELIDAKII., MAVRISY. 2007. Optimization of biogas produc-tion by co-digesting whey with diluted poultry manure. Renewable Energy, 32(13): 2147–2160.
  • GOŁASZEWSKI J. 2011. Wykorzystanie substratów pochodzenia rolniczego w biogazowniach w Pol-sce. Postępy Nauk Rolniczych, 2: 69–94.
  • KACPRZAK K., KRZYSTEK L., LEDAKOWICZ S. 2009. Anaerobic co-digestion of agricultural products and industrial wastes. Environmental Protection Engineering, 35(3): 215–224.
  • KALAČ P. 2011. The required characteristics of ensiled crops used as a feedstock for biogas produc-tion: a review. J. Agrobiol., 28: 85–96.
  • KAPARAJU P., ELLEGAARD L., ANGELIDAKI I. 2009. Optimisation of biogas production from ma-nure through serial digestion – Lab-scale and pilot-scale studies. Bioresource Technology, 100: 701–709.
  • KHAN N., YU P., ALI M., CONE J., HENDRIKS W. 2015. Nutritive value of maize silage in relation to dairy cow performance and milk quality. Journal of the Science of Food and Agriculture, 95(2): 238–252.
  • KLIMIUK E., POKÓJ T., BUDZYŃSKI W., DUBIS B. 2010. Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresource Technology, 101: 9527–9535.
  • KUPRYŚ-CARUK M., PODLASKI S., WIŚNIEWSKI G. 2014. Suitability of knotweed bohemica (Reynoutria x bohemica Chrtek & Chrtkova) for biogas production.Zeszyty Problemowe Postępów Nauk Rolniczych, 579: 27–36.
  • LIU Z., SAHA B., SLININGER P. 2008. Lignocellulosic biomass conversion to ethanol by Saccharo-myces spp. In: Bioenergy. Eds. J. Wall, C. Harwood, A. Demain. ASM Press, Washington, D.C.MurPhy J., WaLLD., O’kieLy P. 2013. Second generation biofuel: biomethane from co-digestion of grass and slurry. In: Proceedings of the 17th Symposium of the European Grassland federation, Akureyri, Iceland, pp. 505–513.
  • MYCZKO A., MYCZKO R., KOŁODZIEJCZYK T., GOLIMOWSKA R., LENARCZYK J., JANAS Z., KLIBER A., KARŁOWSKI J., DOLSKA M. 2011. Budowa i eksploatacja biogazowni rolniczych. Poradnik dla inwestorów zainteresowanych budową biogazowni rolniczych. Wydawnictwo ITP, Warszawa – Poznań.
  • NDEGWA P., HAMILTON D., LALMAN J., CUMBA H. 2008. Effects of cycle-frequency and tempera-ture on the performance of anaerobic sequencing batch reactors (ASBRs) treating swine waste. Bioresource Technology, 99: 1972–1980.
  • NIELSEN H., ANGELIDAKI I. 2008. Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresource Technology, 99(17): 7995–8001.
  • PIĄTEK M., LISOWKI A., KASPRZYCKA A., LISOWSKA B. 2016. The dynamics of an anaerobic diges-tion of crop substrates with an unfavourable carbon to nitrogen ratio. Bioresource Technology, 216: 607–612.
  • RAMA R., BOROWSKI S., DULCET E. 2013. Biogazownie rolnicze konkurencją dla rynku żywności.Inż. Ap. Chem., 52(2): 60–61.
  • DOS SANTOS J.,LIRA M., GUIM A., DOS SANTOS M., JUNIOR J., DE LAODEMELLO A. 2013.Elephant grass clones for silage production, Sci. Agric., 70: 6–11.
  • SOSNOWSKI P., WIECZOREK A., LEDAKOWICZ S. 2003. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid waste. Advances in Environmental Research, 7: 609–616.
  • VERVAEREN H., HOSTYN K., GHEKIERE K., WILLEMS G. 2010. Biological ensilage additives as pre-treatment for maize to increase the biogas production.Renew. Energy, 35: 2089–2093.
  • YADVIK A, SANTOS H, SREEKRISHNAT T.R., KOHLI S., RANA V. 2004. Enhancement of biogas production from solid substrates using different techniques – a review. Bioresource Technology, 95, 1–10.
  • YANG S., LI J., ZHENG Z., MENG Z. 2009. Lignocellulosic structural changes of Spartina alterniflo-ra after anaerobic mono- and co-digestion. International Biodeterioration & Biodegradation, 63(5): 569–575.
  • ZHONG W., ZHANG Z., LUO Y., QIAO W., XIAO M., ZHANG M. 2012. Biogas productivity by co-di-gesting Taihu blue algae with corn straw as an external carbon source. Bioresour. Technol., 114: 281–286.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a9cb182a-f84f-4bb5-a2b2-b8961b50b871
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.