Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 17 | 2 |
Tytuł artykułu

Effect of 28-day oral administration of silver nanocolloid on the peripheral blood leukocytes in mice

Treść / Zawartość
Warianty tytułu
Języki publikacji
Silver nanoparticles, which have found a wide range of applications owing to their antimicrobial properties, are also recommended as dietary supplements in alternative medicine. Studies on rodents confirm that nanosilver is absorbed from the digestive tract into the bloodstream, which implies its possible interactions with leukocytes. The objective of the experiment discussed herein has been to determine the effect of 28-day oral administration of different doses (0.25, 2.5, 25 ppm) of commercial silver nanocolloid on hematological parameters, percentages of particular lymphocyte populations and activity of the peripheral blood leukocytes in mice. All the tested colloid doses decreased the counts of monocytes in the animals’ blood and induced phenotypic modifications among lymphocytes: an increase in CD4+/CD8+ T cell distribution, a decrease in NK and NKT cell distribution (doses of 0.25 and 2.5 ppm) and an increased CD4+:CD8+ ratio (25 ppm). Silver nanocolloid also affected the activity of cells, depressing the proliferation of lymphocytes (0.25 ppm) and stimulating phagocytosis as well as the respiratory burst of granulocytes and monocytes (all doses). The results verify the influence of orally administered silver colloid on the peripheral blood leukocytes, at the same time implying the potential risk of developing an inappropriate immune response of an organism exposed to prolonged administration of this substance.
Słowa kluczowe
Opis fizyczny
  • Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
  • Bernardini G, Gismondi A, Santoni A (2012) Chemokines and NK cells: regulators of development, trafficking and functions. Immunol Lett 145: 39-46.
  • De Jong WH, Van Der Ven LT, Sleijffers A, Park MV, Jansen EH, Van Loveren H, Vandebriel RJ (2013) Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials 34: 8333-8343.
  • Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG (2000) NKT cells: facts, functions and fallacies. Immunol Today 21: 573-583.
  • Greulich C, Diendorf J, Gessmann J, Simon T, Habijan T, Eggeler G, Schildhauer TA, Epple M, Köller M (2011) Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater 7: 3505-3514.
  • Izumi Y, Ida H, Huang M, Iwanaga N, Tanaka F, Aratake K, Arima K, Tamai M, Kamachi M, Nakamura H, Origuchi T, Kawakami A, Anderson P, Eguchi K (2006) Characterization of peripheral natural killer cells in primary Sjögren’s syndrome: impaired NK cell activity and low NK cell number. J Lab Clin Med 147: 242-249.
  • Jankowski MM, Ignatowska-Jankowska B, Glac W, Swiergiel AH (2010) Cocaine administration increases CD4/CD8 lymphocyte ratio in peripheral blood despite lymphopenia and elevated corticosterone. Int Immunopharmacol 10: 1229-1234.
  • Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 19: 857-871.
  • Jovanović B, Palić D (2012) Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish - review of current knowledge, gap identification, and call for further research. Aquat Toxicol 118-119: 141-151.
  • Jun EA, Lim KM, Kim K, Bae ON, Noh JY, Chung KH, Chung JH (2011) Silver nanoparticles enhance thrombus formation through increased platelet aggregation and procoagulant activity. Nanotoxicology 5: 157-167.
  • Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20: 575-583
  • Krajewski S, Prucek R, Panacek A, Avci-Adali M, Nolte A, Straub A, Zboril R, Wendel HP, Kvitek L (2013) Hemocompatibility evaluation of different silver nanoparticle concentrations employing a modified Chandler- loop in vitro assay on human blood. Acta Biomater 9: 7460-7468.
  • Linsen L, Somers V, Stinissen P (2005) Immunoregulation of autoimmunity by natural killer T cells. Hum Immunol 66: 1193-1202.
  • Małaczewska J (2011) Effect of silver nanoparticles on splenocyte activity and selected cytokine levels in the mouse serum. Bull Vet Inst Pulawy 55: 317-322.
  • Małaczewska J (2014) The splenocyte proliferative response and cytokine secretion in mice after 28-day oral administration of silver nanocolloid. Pol J Vet Sci 17: 27-35.
  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63.
  • Orlowski P, Krzyzowska M, Zdanowski R, Winnicka A, Nowakowska J, Stankiewicz W, Tomaszewska E, Celichowski G, Grobelny J (2013) Assessment of in vitro cellular responses of monocytes and keratinocytes to tannic acid modified silver nanoparticles. Toxicol In Vitro 27: 1798-1808.
  • Parel Y, Chizzolini C (2004) CD4+ CD8+ double positive (DP) T cells in health and disease. Autoimmun Rev 3: 215-220.
  • Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30: 162-168.
  • Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32: 9810-9817.
  • Pelkonen KH, Heinonen-Tanski H, Hanninen OO (2003) Accumulation of silver from drinking water into cerebellum and musculus soleus in mice. Toxicology 186: 151-157.
  • Perricone R, Perricone C, De Carolis C, Shoenfeld Y (2008) NK cells in autoimmunity: a two-edg’d weapon of the immune system. Autoimmun Rev 7: 384-390.
  • Shrivastava S, Bera T, Singh SK, Singh G, Ramachandrarao P, Dash D (2009) Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3: 1357-1364.
  • Stebounova LV, Adamcakova-Dodd A, Kim JS, Park H, O’Shaughnessy PT, Grassian VH, Thorne PS (2011) Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 8: 5.
  • Stevens KN, Crespo-Biel O, van den Bosch EE, Dias, AA, Knetsch ML, Aldenhoff YB, van der Veen FH, Maessen JG, Stobberingh EE, Koole LH (2009) The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials 30: 3682-3690.
  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109 (Suppl 4): 547-551.
  • Tian Z, Gershwin ME, Zhang C (2012) Regulatory NK cells in autoimmune disease. J Autoimmun 39: 206-215.
  • Xu Y, Tang H, Liu JH, Wang H, Liu Y (2013) Evaluation of the adjuvant effect of silver nanoparticles both in vitro and in vivo. Toxicol Lett 219: 42-48.
  • Yang EJ, Kim S, Kim JS, Choi IH (2012) Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials 33: 6858- -6867.
  • Zuckermann FA (1999) Extrathymic CD4/CD8 double positive T cells. Vet Immunol Immunopathol 72: 55-66.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.