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Introduction

It is estimated that 47% of all flowering plants and 95% 
of all pteridophytes are polyploids and that the majority of 
these are allopolyploids [1,2], which is a widespread and 
major force of evolution in plants [3]. Allopolyploidy is often 
accompanied by major structural, cytogenetic, epigenetic 
and functional changes to the genome, leading to new 
phenotypes and to reproductive isolation [4,5]. In addition, 
the permanent heterozygosity fixation of the allopolyploid 
[6] has the potential to offer a substantial heterozygote 
advantage. Despite these potential benefits, allopolyploid 
is an enormous challenge with the orchestration of gene 
expression, DNA replication, and chromosome pairing. 
For these reasons, investigation of allopolyploids is very 
important. The newly synthesized allopolyploid is an ideal 
model system since it can offer an opportunity to study the 
response to this genomic change from defined parents.

 Allopolyploid formation can occur by two main path-
ways, the so-called “one-step” and “two-step” models [5]. In 
the one-step model, the allopolyploid arises directly from an 
interspecific cross by the fusion of either two unreduced (2n) 
gametes from diploid parents or two normal (n = 2x) gametes 
from tetraploid parents. By contrast, in the two-step model, 

an interspecific F1 hybrid is first formed and the polyploidy 
is derived from it either from a fertile shoot generated by 
meristematic tissues having experienced a somatic doubling 
or by fusion of two 2n gametes produced by the F1 hybrid 
itself [6]. The production of 2n gametes appears to occur at 
a surprisingly low rate. Ramsey and Schemske estimated its 
frequency at 0.56% [7]. Although with the use of colchicine 
the frequency of the somatic doubling has increased a lot, 
the effective diploidization rate is still very low (10.5%) [8]. 
In addition, problems with chimeras, abnormal phenotypes 
and sterility also occur [9]. Little attention, however, has been 
focused on the use of this method, although a “synthetic” 
allotetraploid had been obtained by crossing a tetraploid 
Arabidopsis thaliana (2n = 4x = 20) and A. arenosa (2n = 
4x = 32) [10].

In the crop Brassica, breeders have resorted to varying 
degrees of hybridization involving close relatives of it in 
their search for novel traits in developing new and improved 
varieties [11]. The non-heading Chinese cabbage (Bras-
sica campestris ssp. chinensis Makino) is a main vegetable, 
which grows in south of China, and it has a long history of 
cultivation in our country. Radish (Raphanus sativus L.) 
is cultivated worldwide. It possesses desirable agronomic 
characters, such as resistance to white rust (Albugo candida) 
[12], BCN (Heterodera schachtii) [13,14] and culbroot 
(Plasmodiophora brassicae) [15], as well as resistance to 
pod shattering [16]. Besides, various related wild species 
have attracted research attention as potential germplasms 
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for improvement of Brassica crops [17]. Therefore, it can be 
used as a gene donor for the modification of the non-heading 
Chinese cabbage. Here, we report the successful production 
of allotetraploid by intergeneric hybridization between 
autotetraploid non-heading Chinese cabbage (Brassica 
campestris ssp. chinensis Makino) and autotetraploid radish 
(Raphanus sativus L.) aimed at enriching the gene pool of 
the non-heading Chinese cabbage (Brassica campestris ssp. 
chinensis Makino) and creating useful research material for 
further understanding of the relationship and the genomic 
structure between the two genera.

Material and methods

Plant material and intergeneric hybridization
The plant material consisted of the two autotetraploid 

cultivars, non-heading Chinese cabbage (Brassica campestris 
ssp. chinensis Makino; maternal parent, 2n = 4x = 40) and 
radish (Raphanus sativus L.; paternal parent, 2n = 4x = 36). 
Seeds of two cultivars were grown on experimental fields 
of Jiangpu Farm, Nanjing Agricultural University. Flowers 
were protected from foreign pollen two days before anthesis 
and intergeneric crosses were made by hand.

Embryo culture
The ovaries were excised 5–10 days after pollination and 

sterilized with 70% ethanol for 30 s followed by a sodium 
hypochlorite solution containing 1% active chlorite for 10 
min. After washing in sterile distilled water three times, 
the ovaries were cultured on MS [18] hormone free solid 
medium containing 500 mg/l casein hydrolysate. Fifteen 
days later, the embryos were isolated from the ovaries and 
transferred to hormone-free MS medium supplemented 
with 5% coconut milk and 500 mg/l casein hydrolysate. 
As most embryos failed to develop directly into plantlets 
[19], cotyledons were cut off and cultured on MS medium 
containing 2 mg/l 6-benzyladenine (BA) and 0.1 mg/l NAA 
and 5% coconut milk in order to induce shoot regeneration. 
After the shoots regenerated, they were transplanted to 
hormone-free 1/2 MS medium supplemented with 0.2 mg/
ml NAA for root induction. All cultures were incubated at 
25°C in a 16-hour photoperiod. The embryo-rescued plants 
with well-developed root system were hardened for 4–8 

days at 10–12°C, 14-hour photoperiod and then transferred 
into pots with soil for normal growth under glasshouse 
conditions [20].

Characterization of hybrids
Hybrid identity of F1 plants was confirmed by mor-

phological examination, chromosome analysis and further 
characterize by simple sequence repeat (SSR) analysis.

Chromosome counts were carried out on root tips from 
hybrid plants and pretreated with 0.002 M 8-hydroxyquino-
line for 4 hours. Material was fixed in 3:1 alcohol-glacial 
acetic acid, hydrolyzed in 1 N HCl 60°C for 6 min and stained 
with leuco-basic fuchsine 30 min, and then squash prepara-
tions were made using 45% acetic acid [21]. About 0.3 g 
fresh leaves were used to extract genomic DNA using the 
cetyl-trimethyl-ammonium bromide (CTAB) method [22]. 
An Eppendorf protein and nucleic determine instrument was 
used for determining DNA concentration. Primer sequences 
for SSR markers obtained from various sources [23–25] 
were used (Tab. 1). The SSR reactions were performed in 
a 20 μl volume containing 60 ng DNA, 0.5 μmol/l forward 
and reverse primer, 0.2 mmol/l dNTPs, 1.0 mmol/l MgCl2, 
and 0.5 U Taq DNA polymerase. The PCR procedure was 
programmed at 95°C for 2 min, 94°C for 30 s, 55°C for 30 s, 
72°C for 30 s for 35 cycles, and then 72°C for 10 min. The 
products were separated on 5% vertical polyacrylamide gel. 
The gel was run at a 150 V constant voltage for 1 to 1.5 h 
before silver staining.

For cytological studies young anthers were fixed in Carnoy 
solution and squashed in 1% acetocarmine [26].

Results

Embryo culture
After 1–2 weeks of culture, the ovaries were observed tur-

gid. Of all the 100 ovaries only 11 embryos developed to the 
mature cotyledonary stage after 3 weeks in culture (Tab. 2). 
Of 11 cultured embryos, 4 embryos germinated (germi-
nation rate = 36.3%) with the help of embryo culture in 
vitro. The 4 embryos germinated halted their development 
when their shoots were 1 cm in length, and did not lead to 
whole plants. Regeneration plantlets were induced from 
the cotyledon sections of the 4 germinated embryos on MS 

Primer name Forward primers Reverse primers

FITO 137 ATGGGTAAGTCTCGTAAATG AAACCGAATAAACCGAAA

Na10F06 CTCTTCGGTTCGATCCTCG TTTTTAACAGGAACGGTGGC

Na12H09 AGGCGTCTATCTCGAAATGC CGTTTTTCAGAATCTCGTTGC

Ni4A03 ACACAGAAACATCAAACATACC GGACCGGTTTTATTTGTTCG

Ol09A06 TGTGTGAAAGCTTGAAACAG TAGGATTTTTTTGTTCACCG

Ol10F11 TTTGGAACGTCCGTAGAAGG CAGCTGACTTCGAAAGGTCC

Ol12F11 AAGGACTCATCGTGCAATCC GTGTCAGTGGCTACAGAGAC

Na14D09 GATCAACGTAAGGTCGCCTC  GAATCCAACGGATCAGAAGC

Tab. 1 Primers for SSR marker assays.
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Crosses No. of cultured ovaries No. of embryos produced No. of embryos survived Rate of germination (%)

B. campestris ssp. chinensis 
Makino × R. sativus

100 11 4 36.3

Tab. 2 Embryo production from ovary culture in hybridizations between B. campestris ssp. chinensis Makino and R. sativus.

Fig. 1 Hybrid identity of F1 plants. a Flowering stage of F1. b Leaves of B. campestris (left), R. sativus (right) and F1 (middle). c Siliques 
of B. campestris (up), R. sativus (middle) and F1 (bottom). d Stamens and pistil of B. campestris (left), R. sativus (right) and F1 (middle). 
e Flower of B. campestris (left), R. sativus (right) and F1 (middle). f Amplification results of primer Na14D09 on B. campestris (P1), 
R. sativus (P2) and F1 (1, 2, 3 and 4). g Chromosome number of F1 (2n = 4x = 38; 1000×). Scale bars: b–e 1 cm.
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medium supplemented with 2.0 mg/l 6-benzyladenine and 
0.1 mg/l NAA, and then they were transplanted to the root 
induction medium. A total of 4 lines were obtained with 
several numbers of plants.

Characterization of hybrids
All hybrid plants were morphologically uniform and 

grew vigorously.
The hybrids were intermediate in size and shape (Fig. 1a). 

They resembled the non-heading Chinese cabbage in the 
long-lived habit, the plant status, the vernalization require-
ment, the petiole color (Fig. 1b). Petiole and silique shape, 
leaf venation pattern and flower color were more similar to 
those of radish (Fig. 1c–e). Upon examination of the flowers, 
these were found to have normal pistil, but rudimentary 
anthers with non-functional pollen grains (Fig. 1d).

 The somatic chromosome number of the regenerated 
plants was counted at the middle stage of cell division. The 
results showed that the chromosome number of all plants 
tested was 38 (Fig. 1g), indicating that these regenerated 
plants were all true hybrids of B. campestris (2n = 4x = 40) 
×R. sativus (2n = 4x = 36).

Out of 8 SSR primer pairs, only 1 pair (12.5%) SSR primers 
(Tab. 1) had polymorphic between parents gnomic DNA. All 
of the hybrids were tested by SSR analysis with 8 primer pairs. 
SSR analysis indicated that the hybrids had hybrid patterns 
containing characteristic bands from R. sativus in addition 
to the B. campestris, which exhibits codominant (Fig. 1f).

Discussion

The present paper describes the production of a new 
allotetraploid by intergeneric hybridization between 

autotetraploid non-heading Chinese cabbage (Brassica 
campestris ssp. chinensis Makino) and autotetraploid radish 
(Raphanus sativus L.) through ovary culture and embryo res-
cue. We found that the production of allotetraploid was about 
4%, which compared favorably with percentages reported 
for B. napus × D. siifoIia (11.5%) [27] and B. campestris × 
M. arvensis (5%) [19]. The interspecific hybridizations we 
obtained confirm that crossing between tetraploid parents 
is a useful method in producing synthetic allotetraploid. 
In addition, the use of two tetraploid parents offers a good 
model for the study of a one-step process of polyploidiza-
tion whereby, in nature, unreduced gametes of two diploid 
parents can yield allotetraploid progeny.

For cytological studies, no functional pollen grains have 
been found and no seeds were obtained by selfing and 
crossed with two parents, which shows that the F1 maybe 
male sterile.

The intergeneric hybrids between non-heading Chinese 
cabbage and radish were successfully produced and char-
acterized. These will be the base material for developing the 
whole set of R. sativus-B. campestris additions in future for 
genome analysis and chromosomal localization of genes. In 
addition, the agronomical potential of the hybrid progenies 
obtained by selfing or backcross are under current evaluation 
on their advancement, improvement and exploitation. Fur-
thermore, this hybrid plant offers an ideal model system to 
study the response to genomic changes from defined parents, 
such as structural rearrangements on the chromosome level 
[28] and sequence level [29,30], regulation of gene expres-
sion [31], activation of transposons [32], and amplification, 
reassortment, or elimination of highly repetitive sequences 
[33] and low-copy sequences [34].
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