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Abstract

Five different data fusion techniques (multiple linear regression (MLR), high-pass filtering (HPF), intensity hue 
saturation (IHS), wavelet transformation (WT) and the hybrid method WT + IHS) have been applied to model the 
aboveground forest biomass (AGB) in this study. The RapidEye multispectral image and the PALSAR radar image 
were used in research as sources of remote sensing data. Five models for estimating forest AGB were built and ana-
lysed using data from test area in Chernihiv region (Ukrainian Polissya). Correlation and min–max accuracy have 
been calculated for each model to measure the model performance. Among all the data fusion approaches used in the 
study, the high-pass filtering method has shown the greatest efficiency.
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Introduction

Rational forest management in today’s changing world 
is an important element of sustainable development. For-
est ecosystems comprise a significant carbon pool and 
play a substantial role in the carbon exchange between 
the land and the atmosphere through the processes of 
photosynthesis, respiration and decomposition. For this 
reason, forests have an important resource, recreation 
and conservation function, and they maintain and sta-
bilize the climate system. This is why the REDD Pro-
gramme was launched in 2008 under the auspices of the 
United Nations (http://www.un-redd.org) while the new 

EU Forest Strategy 2013 also recognizes the important 
role that forests play in this area (Schepaschenko et al. 
2014). The study and assessment of forest productivity 
are, therefore, important components of rational forest 
management given the changing climate (Lyalko et al. 
2012). Forest productivity is conventionally assessed 
using the methods of ground forest inventory. These 
methods provide a  wide set of forest parameters, in-
cluding the data needed for the assessment of the role 
of forest ecosystems in biogeochemical cycles. Tables 
and models of growth and productivity of forests form 
the basis of these methods. Such methods have been ap-
plied for a long time, and to date, many guidelines and 
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primary standards for forest biomass estimation have 
been developed (Shvidenko et al. 1987, 2003, 2007; Sh-
videnko 2003; Lakyda 2002). Ground methods of for-
est inventory provide results with quite high accuracy. 
However, they require considerable time and effort on 
the part of humans to inventory vast areas. Moreover, 
these methods are hard to use in territories that are dif-
ficult to reach geographically. In this latter situation, 
remote sensing methods can be very useful to over-
come these problems. Among all the different methods 
for studying and measuring forests, only remote sens-
ing provides a spatially continuous distribution of land 
cover parameters. We can approximate the ground for-
est inventory data measured for local calibration forest 
plots with the land cover parameters calculated using 
remote sensing. From this, we can create mathematical 
models of aboveground forest biomass on the basis of 
remote sensing and then extrapolate the results to other 
areas. The first attempts of using remote sensing for 
the study of vegetation cover were made in the 1970s 
after the first natural resource satellite ERTS (Landsat 
1) was launched. The main idea behind passive optical 
remote sensing of vegetation investigation is to use dif-
ferences in the solar radiation absorption and reflection 
by plants in different spectral bands. The normalized 
difference vegetation index (NDVI) is one of the first 
vegetation indices (VI) that was proposed for the esti-
mation of vegetation (Rouse et al. 1974; Tucker 1979). It 
remains the most famous and commonly used index for 
living green biomass identification based on multispec-
tral remote sensing data. During the last few decades, 
many other VIs have been proposed for estimating the 
relationship between the spectral signature of the for-
est stand and its productivity (Hall et al. 2006; Lu et 
al. 2004; Ji et al. 2012; Lu et al. 2005; Steininger 2000; 
Song 2013; Hudak et al. 2002). However, these optical 
methods have certain application limitations. For exam-
ple, they can only be used for estimation of top cover, 
and it is impossible to take into account the structure of 
the stand, which greatly affects the quality of the forest 
biomass estimation.

In recent years, there have been numerous works 
undertaken to study forest stand structure and their 
bioproductivity using synthetic aperture radar (SAR) 
systems (Champion et al. 2013, 2014; Balzter et al. 
2007; Neumann et al. 2010; Santoro et al. 2011, 2013; 
Stankevich et al. 2017). The results have shown that ra-

dar surveys can be used successfully to improve forest 
inventory. Unlike optical systems, radar ones are able to 
penetrate the forest cover and allow us to estimate the 
forest stand structure. Therefore, combining these two 
types of systems is very promising for improving the 
estimation of forest biomass (Cartus et al. 2012; Hyde et 
al. 2006; Attarchi and Gloaguen 2014). Based on the in-
tegration of multi-dimensional models of forest ecosys-
tems, multi-sensor remote sensing concepts and ground 
data, a comprehensive quantification of forest cover and 
its parametrization is provided with uncertainties ac-
ceptable for policy-making (Schepaschenko et al. 2014).

This research aimed to study and comparexx1 vari-
ous approaches of optical and SAR images merging for 
aboveground forest biomass modelling.

Material and methods

Estimation of the aboveground forest biomass with field 
data

The main source of data for ground-based estimation of 
Ukrainian forest biomass parameters is the forest inven-
tory carried out by forest enterprises. Previous assess-
ments of Ukrainian forest live biomass have been un-
dertaken by various researchers (Lakyda 2002; Lakyda 
et al. 2011, 2012). In these cases, the aboveground for-
est biomass has not been measured directly during the 
forest inventory but computed using allometric models 
(Shvidenko et al. 1987, 2007; Lakyda 2002; Lakyda et 
al. 2012).

Algorithms for modelling aboveground forest bio-
mass have been developed by Lakyda et al. (2011). The 
models for the assessment of live aboveground biomass 
and the carbon content of different components of the 
forest stand are based on the relations between forest 
productivity and the main inventory parameters of the 
forest stand (e.g. age, diameter and height) (Lakyda et 
al. 2012; Cortés et al. 2014; Lu et al. 2004; Singh et al. 
2014). It has been shown that the relation between live 
biomass and the main biometric indicators of forest 
stands can be expressed as follows:

	 Mi = f(A, D, H, P)	 (1)

where: 
M - aboveground biomass (t/ha), 
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i - �a  component of the forest stand (stem, branches, 
leaves, etc.), 

A – forest age, 
D – average diameter of stems, 
H – average height of forest stand, 
P - relative stocking (Lakyda et al. 2012). 

For example, aboveground biomass of deciduous 
forests of the Ukrainian Polissya was estimated using 
the following equation (Lakyda et al. 2012):

	 Mi = ai × Dbi × Hci × Pdi	 (2)

where: 
ai, bi, ci, di 	– �regression coefficients calculated for each 

biomass fraction of forest (i).

The biomass for the main fractions of trees (stem 
(st), branches (br) and leaves (lv)) has been calculated 
using equation (2), while the biomass of the crown (Mcr) 
and the whole aboveground tree biomass (Mtr) is calcu-
lated using the following:

	 Mcr = Mbr + Mlv 	 (3)

	 Mtr = Mst + Mcr	 (4)

To convert this biomass into carbon, coefficients 
of carbon content in the corresponding fraction are 
utilized. From the literature, Lakyda et al. (2012) have 
assumed values of 0.5 and 0.45 for wood and leaves re-
spectively. Thus, the equations for calculating carbon 
stock in the forest stand are given as follows:

	 Mc
cr = 0.5Mbr + 0.45Mlv 	 (5)

	 Mc
tr = 0.5(M|st + Mbr) + 0.45Mlv	 (6)

Optical remote sensing for forest biomass modelling

Optical remote sensing of forests is based on developing 
relationships between spectral signatures and measured 
parameters. Multispectral satellite images provide the 
spatial distribution of land cover reflectance in the vis-
ible, near-infrared and infrared spectral ranges. These 
reflectance data can be used directly as well as for VI cal-
culations. Depending on the complexity, such indices 
can be divided into simple ratios (SR), normalized dif-
ferences (ND) and complex vegetation indices (Lu et al. 

2004). A wide set of VIs has already been proposed to 
date; some of these are listed in Table 1. The theoretical 
basis for empirical VIs is derived from an examination of 
the typical spectral reflectance signatures of leaves. The 
reflected radiation in visible bands is very low as a result 
of high absorption by photosynthetically active pigments, 
with maximum absorption in blue (470 nm) and red (670 
nm) wavelengths. Near-infrared radiation (NIR) is scat-
tered (reflected and transmitted) with very little absorp-
tion in a manner dependent upon the structural properties 
of a canopy (leaf area index (LAI), leaf angle distribution 
and leaf morphology). As a result, the contrast between 
red and near-infrared responses is a  sensitive measure 
of vegetation amount, with RED/NIR maximum over 
a dense canopy and minimal contrast over rare or no veg-
etation. A major finding on atmospheric effect minimi-
zation is the use of the difference in blue and red reflec-
tances as an estimator of the atmosphere influence level. 
This concept is based on the wavelength dependency of 
aerosol scattering cross sections. In general, the scatter-
ing cross section in the blue band is larger than that in the 
red band. When the aerosol concentration is higher, the 
difference in the two bands becomes larger. This infor-
mation is used to stabilize the index value against varia-
tions in aerosol concentration levels. 

The enhanced vegetation index (EVI) incorporates 
this atmospheric resistance concept in the atmospheric 
resistant index (ARVI), along with the removal of soil-
brightness-induced variations in VI as in the soil ad-
justed vegetation index (SAVI). The EVI additionally 
decouples the soil and atmospheric influences from the 
vegetation signal by including a  feedback term for si-
multaneous correction.

Lu et al. (2004) showed that the relationships be-
tween TM reflectance and forest stand parameters vary 
depending on the characteristics of the study areas. 
However, not all vegetation indices are significantly re-
lated to forest stand parameters. What is crucial is the 
selection of suitable TM band (s) and VIs for relevant 
biophysical parameter estimation.

SAR data for forest biomass modelling

Unlike optical remote sensing, which allows for es-
timating only the top of the forest cover and does not 
provide any information about forest structure (due to 
impermeability of the optical waves), radar remote sens-
ing uses the microwave portion of the electromagnetic 
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spectrum. Canopy penetration varies with different 
wavelengths. Shorter wavelengths (e.g. X-band imagery 
at 3 cm) are reflected from the top of the canopy, while 
longer wavelengths (e.g. L-band imagery at 24 cm) go 
down to the ground and are reflected from there. Using 
these properties of different wavelengths makes it pos-
sible to discern information about canopy structure of 
a forested area from a multi-wavelength image and thus 
estimate the different component of AGB.

One more useful feature of radar data for study-
ing forest structure is polarization. Transmitted and re-
ceived radar signals are propagated in a certain plane. 
The propagation planes are usually horizontal (H) and 
vertical (V). Vertically polarized waves interact with 
the vertical stems of the forest cover, while horizontally 
polarized waves penetrate through the canopy. Thus, 

the combination of images with different channels can 
provide additional information about forest structure.

As with optical remote sensing data, two sets of tex-
ture features can be calculated using SAR data. The first 
set of calculations can be derived from the backscatter 
(sigma nought, σ0) distribution and the second one from 
the grey-level co-occurrence matrix. The intensity scenes 
of SAR images are converted in their corresponding 
backscattering coefficient (σ°) values using the following 
equation (Attarchi et al. 2014; Shimada et al. 2009):

	 σ0 = 10 × log10(I2 + Q2) + CF – 32.0	 (7)

where: 
CF – �calibration factor = −83 dB, 
I, Q – �the real and imaginary parts of the complex SAR 

image pixel values.

Table 1. Some spectral vegetation indices used for vegetation cover estimation

Index Equation Reference
Simple ratio

TM4/3 TM4/TM3 Jordan, 1969
TM5/3 TM5/TM3 Lu et al., 2004
TM5/4 TM5/TM4 Lu et al., 2004
TM5/7 TM5/TM7 Lu et al., 2004

Normalized different vegetation indices
NDVI (TM4 − TM3)/(TM4 + TM3) Rouse et al., 1974
NDVI53 (TM5 − TM3)/(TM5 + TM3) Lu et al., 2004
NDVI54 (TM5 − TM4)/(TM5 + TM4) Lu et al., 2004
NDVI57 (TM5 − TM7)/(TM5 + TM7) Lu et al., 2004

NDVI32 (TM3 − TM2)/(TM3 + TM2) Lu et al., 2004

GNDVI (TM4 − TM2)/(TM4 + TM2) Gitelson et al., 1996

NDII (TM4 − TM5)/(TM4 + TM5) Hardisky et al, 1983
NDII7 (TM4 – TM7)/(TM4 + TM7) Hardisky et al, 1983
NDWI (TM2 – TM5)/(TM2 + TM5) Lacaux et al., 2007
NDWI7 (TM2 – TM7)/(TM2 + TM7) Lacaux et al., 2007

Complex vegetation indices
SAVI (TM4 – TM3)/(TM4 + TM3 + L)(1 + L) Huete, 1988
EVI G(TM4 − TM3)/(TM4 + C1TM3 − C2TM1)+L Huete, 1997
ARVI (TM4 – 2TM3 + TM1)/(TM4 + 2TM3 – TM1) Lu et al., 2004
GEMI ξ(1 – 0.25ξ) – ((TM3 – 0.125)/(1 – TM3)) Lu et al., 2004
ASVI ((2TM4 + 1) − √((2TM4 + 1)2 – 8(TM4 – 2TM3 + TM1)))/2 Lu et al., 2004
MSAVI ((2TM4 + 1) − √((2TM4 + 1)2 – 8(TM4 – 2TM3)))/2 Lu et al., 2004

Note: TM(X) is corresponding Landsat TM/ETM+ spectral band



Folia Forestalia Polonica, Series A – Forestry, 2023, Vol. 65 (2), 55–67

Application of various approaches of multispectral and radar data fusion for modelling… 59

	 DMn = 
S

√–N
	 (1)

To take into account the effects of relief, the topo-
graphic normalized backscattering coefficient (the cor-
rected backscatter in gamma-nought γ°) can be obtained 
from the sigma-nought σ° value according to Ulander 
(1996), Castel et al. (2001) and Santoro et al. (2011):

	 γ0 = 𝜎0 ×
Aflat × ( cosθref )n

Aslope cosθloc
	 (8)

where: 
𝜎0	 – �the radar backscattering coefficient, 
Aflat 	 – �the pixel size for a theoretical flat terrain, 
Aslope 	– �the true local pixel size for the mountain terrain, 
θloc 	 – �the local incidence angle, 
θref 	 – �the radar incidence angle at the image centre. 

The exponent n is the optical canopy depth and 
ranges between 0 and 1. It is a site-specific factor and 
difficult to obtain in practice; therefore, it is set to 1 
(Thiel et al. 2009; Kim 2012; Santoro et al. 2011; At-
tarchi et al. 2014).

Previous studies have shown that the forest back-
scatter can be described as a  function of the growing 
stock volume, V (Pulliainen et al. 1994; Santoro et al. 
2011):

	 σ o
for = σ o

gr × e–βV + σ o
veg (1 – e–βV) 	 (9)

The backscatter model in Eq. (9) contains three un-
knowns that need to be estimated: σ o

gr, σ o
veg and β. These 

can be determined by means of least-squares regres-
sion, using a dataset of reference forest growing stock 
volume (GSV) measurements (Pulliainen et al. 1994; 
Santoro et al. 2002, 2013). After backscatter coefficients 
and texture features have been calculated, we can esti-
mate the forest GSV.

Multi-source remote sensing and field data fusion

Data fusion is a  general multi-discipline approach. It 
combines data from multiple sources to improve the 
potential values and interpretation performances of the 
source data and to produce a high-quality visible repre-
sentation of the data.

In general, remote sensing fusion techniques can 
be classified into three different levels: the pixel/data 
level, the feature level and the decision level (Pohl and 
van Genderen 1998; Zhang 2010). Pixel-level fusion is 
the combination of raw data from multiple sources into 

single resolution data, which is expected to be more ac-
curate than either of the individual input data or it may 
reveal the changes between data sets acquired at differ-
ent times (Zhang 2010).

Feature-level fusion extracts various features, e.g. 
edges, corners, lines and texture parameters, from dif-
ferent data sources and then combines them into one 
or more feature maps that may be used instead of the 
original data for further processing. This is particularly 
important when the number of available spectral bands 
becomes so large that it is impossible to analyse each 
band separately. Typically, in image processing, such 
fusion requires a precise (pixel-level) registration of the 
available images. Feature maps thus obtained are then 
used as inputs to pre-processing for image segmentation 
or change detection (Zhang 2010).

Decision-level fusion combines the results from 
multiple algorithms to yield a  final fused decision. 
When the results from different algorithms are ex-
pressed as confidences (or scores) rather than decisions, 
it is called soft fusion; otherwise, it is called hard fu-
sion. Methods of decision fusion include voting meth-
ods, statistical methods and fuzzy logic-based methods 
(Zhang 2010).

There are a set of multi-source remote sensing data 
fusion methods, which are based on different tech-
niques: Markov random field (MRF) (Solberg et al. 
1996), support vector machines (SVM) (Waske and 
Benediktsson 2007) and the decision fusion approach 
for multi-temporal classification (Jeon and Landgrebe 
1999). However, the different nature and content of 
remote sensing imagery and GIS data prevent a direct 
comparison. Therefore, the integration of data from 
different applications must address the differences in 
the object model and the semantics of the objects them-
selves (Zhang 2010). Images are usually composed of 
a  raster of pixels representing the intensities, whereas 
GIS data contain artificial objects (points, lines and 
polygons) with label forms, representing the objects or 
region affiliations. To combine segmented objects or 
primitives from remote sensing images and GIS data 
at the feature level or decision level, traditional pattern 
recognition methods can be used and have demonstrat-
ed their potential capabilities, e.g. knowledge-based 
techniques (Amarsaikhan and Douglas 2004), neural 
network and statistical approaches (Benediktsson and 
Kanellopoulos 1999), fuzzy set theories (Fauvel et al. 
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2006), Bayesian techniques and Dempster-Shafer-based 
methods (Zhang 2010).

Data
Field data (measurement of forest live biomass in situ)

The field data were collected during detailed forest in-
ventory supported by the National University of Life 
and Environmental Sciences of Ukraine. The study 
area is located in Chernihiv region (Ukrainian Polis-
sya) (lat., long. of the area centre are 52.070556 N, 
31.839722 E), and it covers an area of over 60 sq. km. 
Within this site, the measurements of forest parameters 
by ground-based methods have been performed. The 
dataset contains the results of the measurements of for-
est live biomass structure. The data are presented in the 
same units and organized as a  unified structure. The 
dataset is designed for studying the biological produc-
tion of Ukrainian forests under global change. It has 
been used for (1) modelling of fractional structure of 
forest live biomass in Ukraine based on data from the 
forest inventory (State Forest Account) and (2) the de-
velopment of models and tables of dynamics of bio-
logical productivity of forests. For these reasons, the 
dataset contains detailed biometric indicators of forest 
stands within the sample plots.

The dataset contains the following information for 
each test plot:

–– Geographical location (administrative region, for-
estry, plot number, plot area and geographical coor-
dinates (if available))

–– Forest type
–– Biometric characteristics of stands (dominant spe-

cies, species composition, number of model trees, 
age, average height and average stem diameter, num-
ber of trees per 1 ha, absolute and relative stocking, 
growing stock volume and AGB of different com-
ponents of the forest stand (stem, branches, leaves, 
bark and undergrowth)
There are more than 150 and more than 200 sam-

ples for coniferous forest and for softwood species re-
spectively. This provides an adequate sample for build-
ing the models and their validation.

Remote sensing data

The RapidEye multispectral image from July 1, 2010, 
and the PALSAR radar image from August 2, 2009, 
were selected as sources of remote sensing data. 

PALSAR is L-band SAR sensor. We used imagery 
of SLC Fine Beam Double polarization HH/HV product 
(level 1.1) with a  12-meter resolution. In order to use 
SAR data in a quantitative fashion, we applied a range 
of pre-processing steps. First, radiometric calibration 
has been done to convert radiometry default value of 
amplitude (the pixel values in the image are raw digital 
numbers) into sigma value. Second, terrain correction 
has been done to remove geometry-induced distortions 
and geocoding has been performed to transform the 
image from the SAR geometry into UTM projection. 
Finally, speckle filtering has been applied using Lee-
Sigma filter.

RapidEye optical system provides five spec-
tral bands (440–510 nm (blue), 520–590 nm (green), 
630–685 nm (red), 690–730 nm (red edge) and 760–850 
nm (near infrared)) with a 6.5-meter spatial resolution. 
We used RapidEye Ortho Tile Product (Level 3A). In 
this product, radiometric and sensor corrections applied 
to the data as well as imagery are orthorectified using 
the RPCs and an elevation model. Therefore, we addi-
tionally performed only atmospheric correction of the 
image and converted its spatial resolution to adapt it to 
SAR image.

Results and Discussion

Using the RapidEye multispectral image, the average re-
flectance for each spectral band, as well as the average 
amplitude value for HH and HV polarimetry modes in 
case of the PALSAR image, was calculated for each for-
est sample plot. The obtained values were compared with 
the aboveground forest biomass data from field data set. 
This preliminary analysis shows that forest AGB values 
have either exponential or power relation with spectral 
reflectance and SAR amplitude value. It also reveals 
that the saturation level of informative signal for the 
optical spectral bands is achieved at the value of forest 
AGB about 50 t/ha. This is due to the above-mentioned 
limitations of optical systems. It means that at the forest 
AGB value of 50 t/ha and above, the forest canopy is too 
dense to be penetrated by optical system. In case of the 
PALSAR image, such saturation level of radar signal is 
achieved at the value of forest AGB about 100–150 t/ha.

However, one of the disadvantages of radar data 
is that radar measurements over rough surfaces are 
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corrupted by “speckle” that significantly affects the 
results accuracy of the vegetation productivity mod-
elling. To reduce such impact, the implementation of 
data fusion techniques to combine radar and optical 
data is forward-looking approach. It allows to use the 
strengths of both types of data and could increase the 
accuracy of the estimates. There are a  large number 
of different techniques for remote sensing data fusion. 
However, many of them cannot be used to merge pas-
sive optical and active SAR remote sensing data due 
to significant differences in data characteristics and 
information content it provide. Pohl and van Genderen 
(2016) came to the conclusion that wavelet fusion and 
high-pass filtering approaches are equally suitable to 
merge optical/SAR data. Some authors (Zhang et al. 
2010) suggested using linear regression to combine 
multispectral and SAR images. Therefore, to compare 
the effectiveness of different data fusion approaches 
for modelling of forest AGB, we decided to use such 
fusion techniques as multiple linear regression (MLR), 
high-pass filtering (HPF), intensity hue saturation 
(IHS), wavelet transformation (WT) and the hybrid 
method WT + IHS.

High-Pass Filtering

HPF is one of the first developed im-
age merge methods (Schowengerdt 1980, 
2007a, b; Chavez et al. 1991; Pohl and van 
Genderen 2016), which has been used for 
image fusion for more than 30 years. It was 
primarily designed to improve the resolu-
tion of multispectral images by transfer-
ring spatial details derived from a  higher 
resolution PAN or SAR image to a  lower 
resolution multispectral image. This meth-
od is performed in three stages (Pohl and 
van Genderen 2016):
1.	 High-pass filtering the high-resolution 

SAR image
2.	 Add the high-pass filtered image to 

each multispectral band using individ-
ual weights depending on the standard 
deviation of the MS bands

3.	 Match the histograms of the fused im-
age to the original MS bands
Thus, this method extracts high-fre-

quency information from the SAR image, 

which is then added to each spectral channel of the mul-
tispectral image.

Figure 1a shows the result of merging the PALSAR 
image (HH mode) with RapidEye multispectral image 
using HPF method.

Intensity Hue Saturation (HIS) Transform

IHS transform is one of the most popular methods of 
merging remote sensing images. It uses a mathemati-
cal colour model based on a  cylindrical or spherical 
coordinate system. This method effectively sepa-
rates spatial (I) and spectral (H, S) information from 
a standard RGB image (Pohl and van Genderen 2016).

There are two ways to use IHS transformation to 
merge images: direct and substitutional. The first way 
is to directly convert the three spectral channels of the 
image into I, H and S. The second method involves con-
verting the three spectral channels from the RGB into 
IHS colour model, where colour aspects are separated 
by its average brightness. The hue and saturation in this 
case are related to the surface reflectivity or composi-
tion. The SAR image then replaces one of the compo-

A B

C D

Figure 1. Results visualization of merging the PALSAR band (HH mode) 
with RapidEye multispectral image using various data fusion approaches
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nents, and reverse transformation from IHS to RGB 
converts the data into their original colour model to 
produce a new synthesized image.

Figure 1b shows the result of merging the PALSAR 
image (HH mode) with a multispectral RapidEye image 
using IHS method.

Wavelet Transformation (WT)

Wavelet transform is another powerful mathematical 
tool used for signal processing. It is used to decom-
pose a function or signal into several components (co-
efficients). When using this method to merge images, 
the main idea is to decompose the original images into 
a number of fragments using direct wavelet transform. 
The information is merged on the basis of the obtained 
coefficients of these fragments, and the inverse wave-
let transform is applied to synthesize new image. This 
method is suitable for merging images from different 
sources with varied physical backgrounds (such as radar 
and optical images) because it decomposes images into 
different types of coefficients, preserving the source in-
formation. Based on these coefficients, a new image can 
be synthesized using inverse wavelet transform (Pajares 
and Cruz 2004).

Figure 1c shows the result of merging the PALSAR 
image (HH mode) with RapidEye multispectral image 
using WT method.

Hybrid Wavelet – IHS fusion (WHIS)

Hybrid data merging methods are widely used to com-
promise between spatial and spectral optimization. 
WHIS combines the IHS transformation approach 
with methods used to merge data with different spatial 
resolution, such as WT (Chibani and Houacine 2002; 
Gonzalez-Audicana et al. 2004; Zhang and Hong 2005). 
During wavelet-IHS transformation (WIHS), the multi-
spectral data are converted to IHS colour model. Then, 
the intensity component I  is decomposed using WT 
method. The SAR image is matched to I and then also 
decomposed by the WT method. The decomposed com-
ponent I  is replaced by the SAR decompositions, and 
the inverse IHS transformation is performed (Pohl and 
van Genderen 2016).

Figure 1d shows the result of merging the PALSAR 
image (HH mode) with RapidEye multispectral image 
using WHIS method.

Modelling of aboveground forest biomass

The field data set of forest AGB was divided into two 
samples with the proportion of 70/30. The first sample 
(70% of data) was used to build models, which accuracy 
was further assessed using the second sample (30% of 
data). Regression analysis methods were used to find 
a  set of relationships between forest AGB and varied 
combinations of remote sensing data for each approach. 
As a final result, one model that has the highest accu-
racy was selected for each approach.

In case of using HPF approach, the best result was 
achieved for merged HH PALSAR band with 4th Rapi-
dEye spectral band. It is described by the following 
equation (Fig. 2):

	 AGB = 9877.69 × е-47.08 × HPF(HH +B4)	 (10)

where: 
HPF(HH + B4) – �the signal from fused HH PALSAR 

band with 4th RapidEye spectral band 
using HPF approach.
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Figure 2. Relation of forest AGB with the merged RapidEye 
4th spectral band and HH PALSAR band using HPF 
approach

In case of using IHS approach, the best result was 
achieved for merged HH PALSAR band with 4th Rapi-
dEye spectral band. It is described by the following 
equation (Fig. 3):

	 AGB = 1.3701е + 16 × IHS(HH + B4)11.15	 (11)

where: 
IHS(HH+B4) – �the signal from fused HH PALSAR 

band with 4th RapidEye spectral band 
using IHS approach.
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Figure 3. Relation of forest AGB with the merged RapidEye 
4st spectral band and HH PALSAR band using IHS approach

In case of using WT approach, the best result was 
achieved for merged HH PALSAR band with 4th Rapi-
dEye spectral band. It is described by the following 
equation (Fig. 4):

	 AGB = 35110 × е-59.62 × WT(HH + B4)	 (12)

where: 
WT (HH+B4) – �the signal from fused HH PALSAR 

band with 4th RapidEye spectral band 
using WT approach.

0.09
0

50

100

150

200

0.1
WT HH + B4

Ab
ov

e-
Gr

ou
nd

 B
io

m
as

s, 
t/

ha

Figure 4. Relation of forest AGB with the merged RapidEye 
4th spectral band and HH PALSAR band using WT approach

In case of using hybrid WIHS approach, the best 
result was achieved for merged HH PALSAR band with 
4th RapidEye spectral band. It is described by the fol-
lowing equation (Fig. 5):

	 AGB = 19133.31 × е-53.01 × WIHS(HH + B4)	 (13)

where: 
WIHS (HH+B4) 	– �the signal from fused HH PALSAR 

band with 4th RapidEye spectral 
band using WIHS approach.
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Figure 5. Relation of forest AGB with the merged RapidEye 
4th spectral band and HH PALSAR band using WIHS 
approach

In case of using MLR approach, the best result 
was achieved for merged HH PALSAR band with 4th 
RapidEye spectral band. It is described by the following 
equation:

	 AGB = 308.53 - 2530.68B4 + 211.55HH	 (14)

where: 
B4 is the reflection coefficient of the 4th spectral band 
of the RapidEye image and HH is the amplitude of the 
reflected radar signal in the HH mode.

The accuracy of the obtained models was assessed 
with a test data set, which was not used for the models 
building. The modelled data were compared with the 
data of field measurements, and the correlations be-
tween measured and modelled data were calculated for 
each model (Tab. 2).

Table 2. Parameters of the models for the accuracy 
estimation

Fusion techniques R2

C
or

re
-

la
tio

n

ММА

MLR (RapidEye, 4th band +  
+ PALSAR, НН band) 0.698 0.837 0.575

IHS (RapidEye, 4st band + PALSAR, 
НН band) 0.530 0.731 0.591

HPF (RapidEye, 4th band +  
+ PALSAR, НН band) 0.643 0.804 0.652

WT (RapidEye, 4th band + PALSAR, 
НН band) 0.370 0.614 0.623

WIHS (RapidEye, 4th band +  
+ PALSAR, НН band) 0.476 0.694 0.604
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The correlation shows the relationship between 
the measured and modelled values. The index lays 
in a range from –1 to 1. Higher correlation means bet-
ter model performance. A  correlation of 0 indicates 
no relationship between the measured and modelled 
values.

Also, to assess the accuracy of each model, the 
min–max accuracy (MMA) was calculated:

	 MMA = mean ( min(actuals, predicteds) )max(actuals, predicteds)
	 (15)

This parameter shows how close the predicted val-
ues are to the actual ones. The MMA value ranges from 
0 to 1, where a value of 1 indicates a perfect match be-
tween actual and predicted values. So, higher MMA 
score means better model performance.

Among the different methods of data fusion used in 
the research, the HPF method (correlation 0.804, MMA 
0.652) showed the best result with a significant advan-
tage over other methods.

Conclusions

Nowadays, data from both passive and active remote 
sensing are becoming more and more available. They 
have different nature, and accordingly, they have differ-
ent advantages and disadvantages. Therefore, their joint 
using for the land cover studying and vegetation param-
eters assessing (including forest cover) can significantly 
improve the results. This research aimed to study and 
compare various approaches of optical and SAR images 
merging for forest AGB modelling. Five models for es-
timating forest AGB were built and analysed using data 
from test area in Chernihiv region (Ukrainian Polis-
sya). Obtained results confirm conclusions from previ-
ous studies (Santoro et al. 2013) about low accuracy of 
aboveground biomass modelling using SAR data due 
to the speckle effect. The merging of optical and SAR 
data significantly increases the accuracy of the simula-
tion, and among all the data fusion approaches used in 
the study, the method of high-pass filtering (HPF) has 
shown the greatest efficiency.
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