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Abstract: Natural forests comprise trees of different species and sizes, constituting a “biotic framework”. 
Although examinations of diversity patterns at various spatial scales are frequently conducted, life stages 
are rarely accounted for. Pine-oak mixedwood forest is widely distributed around the world and constitutes 
main forest type in the Nanpan River Basin in southwest China. We established a fixed plot with an area of 
100 m × 100 m in an undisturbed forest stand and classified trees according to five life stages based on their 
diameter at breast height (DBH) and height. Then, we calculated eight traditional diversity indices for each 
life stage. We found that species richness (R), abundance (N), and three diversity indices first increased and 
then decreased with increasing life stage. As sampling area increased, R, the Shannon-Wiener index (H') 
and Simpson’s diversity index (D) first increased quickly, followed by a reduced rate of increase, whereas 
N showed a linear increase and three evenness indices showed gradual decreases. Global Moran’s I values 
for each diversity index were small, indicating weak spatial autocorrelation. Both R and N of shrubs and 
saplings decreased sharply with life stage, with only large trees comprising the later life stages. Our results 
indicate that species diversity patterns in pine-oak forests, particularly in early successional stages, differ 
among life stages. The changes contribute to the understanding and conservation of forest biodiversity.
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Introduction

At the global scale, increases in extreme climate 
events (Franklin et al., 2007; Marimon et al., 2020), 
pest and disease outbreaks, alien species invasions 
(Dyderski & Jagodziński, 2020), and anthropogenic 
activity (Barlow et al., 2016; Gomes et al., 2019) have 

damaged forest ecosystems, leading to biodiversity 
loss and widespread concern. Trees are the primary 
constituents of forests and thus the most relevant 
biodiversity measure at the stand scale (i.e., alpha 
diversity) (Lähde et al., 1999; Valbuena et al., 2012; 
Feroz et al., 2016). Generally, higher tree species rich-
ness (R) is associated with greater genetic diversity, 



 Species diversity patterns differ by life stages in a pine-oak mixed forest 139

which promotes ecological variation and greater niche 
utilization (Hui & Pommerening, 2014). Tree species 
diversity has been a major focus of forest ecosystem 
research (Ma, 1994; Ma & Liu, 1994; Turner & Tjørve, 
2005; Hwang & He, 2011; Ostertag et al., 2014) and 
is critical to sustainable development and forest man-
agement efforts (Barna & Bosela, 2015).

Trees of varying sizes, life stages, and species pro-
vide scaffolding promoting structural and species di-
versity in forests (Li et al., 2020a). Life stages vary 
morphologically among trees, but all follow a process 
of maturation from germination to saplings, adults, 
senescence and mortality. Many assessments of tree 
diversity in natural stands use permanent monitoring 
plots, wherein the recording of trees begins when they 
reach a diameter at breast height (DBH; 1.3 m) of ≥ 
1 cm, following the standards proposed by the Center 
for Tropical Forest Science (He et al., 1996; 2002; 
Ostertag et al., 2014; Inman-Narahari et al., 2016; 
Shankar, 2019). Few studies have assessed trees with 
a DBH < 1 cm (Zhang et al., 2010), because these in-
dividuals are often grouped together under “regenera-
tion” and assessed at lower vegetation strata (Barna & 
Bosela, 2015; Liira et al., 2017; Lin et al., 2017; Awas-
thi et al., 2020; Ray et al., 2021). However, variability 
in regeneration may not be well reflected in understo-
ry surveys (Clark et al., 1999). In reality, natural for-
ests may show a reversed J-shaped distribution of tree 
diameter (Hui & Pommerening, 2014; Shankar, 2019; 
Li et al., 2020a). Therefore, large numbers of small in-
dividuals, namely germinants, seedlings, and saplings, 
are often neglected in species diversity assessments.

It is critical to account for space in species diversity 
analyses. Species diversity is closely related to the spa-
tial scale of measurement, both within regions (e.g., 
climatic zones) and between them (Stein et al., 2014; 
Chisholm et al., 2018; Shankar, 2019). The relation-
ships between R, abundance (N), and spatial scale 
have been well discussed, with much consideration of 
sampling methods, including quadrat shape and size 
(He et al., 1996; Turner & Tjørve, 2005; Hwang & He, 
2011; Jin et al., 2019). Many studies have employed 
nested quadrats and assessed differences in R and N 
by grain size (He et al., 2002; Wang et al., 2007; Zhang 
et al., 2010). Others have explored relationships be-
tween different R, N, and spatial measures (Ostertag 
et al., 2014), or correlations with diversity across scale 
(Stein et al., 2014; Almoussawi et al., 2020). Gener-
ally, these assessments have aimed to understand tree 
and shrub species composition, habitat characteris-
tics, or vegetation restoration processes (Tang et al., 
2010; Chisholm et al., 2018). However, it remains 
unclear if relationships between species diversity and 
scale are consistent across life stages.

The majority of trees in natural forests originate 
from seeds. As trees grow, they are at high risk of 
mortality due to resource constraints (e.g., limited 

soil resources, rainfall, and/or light), habitat hetero-
geneity/partitioning (e.g., karst topography and ter-
rain gradients), competition from neighboring trees, 
predation, pests and diseases, and stochastic events 
(Coomes & Allen, 2007; Guo, 2021). Generally, the 
smaller individual, the lower capacity for adaptation 
to adverse conditions (Franklin et al., 1987; Laar-
mann et al., 2009; Hurst et al., 2012; Wang et al., 
2017). Therefore, we hypothesized that earlier life 
stages would be more abundant, i.e., represented by 
a greater number of individuals, with higher R and 
higher diversity (i.e., hypothesis 1), and that spa-
tial scale would have limited influence on young life 
stages, given that these small individuals require few 
habitat resources (i.e., hypothesis 2).

Materials and Methods
Study area

The study area was located in Guangxi Yachang 
Orchid National Nature Reserve, China (106°11'31"–
106°27'04"E, 24°44'16"–24°53'58"N). The area is 
characterized by a mountainous transition zone 
between the Yunnan-Guizhou Plateau and rolling 
hills of Guangxi. Most of the mountainous terrain 
is typical karst landform, with numerous caves and 
some eolian deposits. The climate is mid-subtropical 
monsoon, with the majority of the region influenced 
year-round by both the Foehn effect and monsoon 
circulation. The average annual temperature is ap-
proximately 16.3 °C, with extreme highs of > 40 °C 
and extreme lows of −3 °C. The average annual rain-
fall is approximately 1,050 mm, most of which falls 
during the summer months. Droughts can be severe 
during the spring and winter, leading to distinct sea-
sonal dry and wet periods (Li et al., 2017, 2020a, 
2020b; Yu et al., 2018).

Within this area, the sampling plot was estab-
lished at the Langquqan conservation station, near 
the town of Huaping (24º51'15.9"E, 106º19'4.2"N). 
This area was once dominated by a primary forest 
of Pinus yunnanensis var. tenuifolia (PY) that was com-
pletely burned by a wildfire in 1987. It was replaced 
by a natural secondary forest dominated by PY and 
several oak species, and showed no signs of addition-
al disturbance and no clear vertical stratification. The 
stand is dense, with a high crown density (0.9). Oth-
er common species include Keteleeria davidiana (Ber-
tr.) Beissn., Rhus chinensis Mill., Schima wallichii (DC.) 
Choisy, Betula alnoides Buch-Ham., Meliosma veitchio-
rum Hemsl., Liquidambar formosana Hance, Myrica ru-
bra (Lour.) S. et Zucc., Lyonia ovalifolia (Wall.) Drude 
var. elliptica, Eurya distichophylla Hemsl., and Wendlan-
dia uvariifolia Hance. There was obvious stratification 
of tree species with elevation within the plot. In the 
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understory, Dicranopteris linearis (Burm.f.) Underw. 
completely dominates the herb layer, with scattered 
Miscanthus floridulu (Labnll.) Warb and orchids. Oak 
species were predominant in the regenerating under-
story, with ample decaying coarse woody debris and 
snags (Li et al., 2017, 2020a, 2020b; Yu et al., 2018).

Plot establishment

Pine-oak mixed forest is zonal vegetation in the 
Nanpanjiang River basin. Based on terrain and for-
est growth conditions, we established a fixed quad-
rat of 100 m × 100 m on an upper slope in 2016. 
Using a handheld GPS unit, we established the four 
outer boundaries of the quadrat and divided it into 
25 20 m × 20 m sub-quadrats using a total station 
(NTS-372R10; South Group, Guangzhou, China). 
Plastic tubes were inserted into the soil at the corner 
of each sub-quadrat and then reinforced with rebar 
approximately 60 cm in length. We then determined 
the relative positions (x, y, and z) of all trees ≥ 10 cm 
in height (HT) in each sub-quadrat using the eccen-
tric mode of the total station. Live trees with a DBH 
≥ 5 cm were tagged with aluminum tags and their 
HT, DBH, and crown width were assessed. Any trees 
with a DBH < 5 cm and HT ≥ 10 cm were marked 

with plastic plates, after which we measured their 
HT, DBH, and ground diameter. We also recorded 
the species and growth status (i.e., bent, bifurcat-
ed, withered, broken, reclined, or sprouting) (Li et 
al., 2017, 2020a, 2020b). In total, 2,391 trees with a 
DBH ≥ 5 cm, and 2,144 with DBH < 5 cm and HT ≥ 
10 cm, were recorded, representing 24 species (Ta-
ble 1). We also mapped the understory locations of 
herbaceous species. Due to nutrient-poor soils and 
slow tree growth, we intend to census the plot every 
6 years to obtain temporal data.

Classifying trees, small trees, and shrubs is chal-
lenging due to overlap in size among species and un-
clear vertical stratification (Li et al., 2020a, 2020b). 
We used five size classes based on DBH and HT, as 
described in Table 1, and recorded the number of in-
dividuals of each life stage. Some species were rep-
resented in all life stages, whereas others were only 
represented in a single stage.

Data analyses

We calculated eight species diversity indices: R, 
N, Shannon-Wiener index (H'), Simpson’s diversity 
index (D), Fisher’s alpha diversity index (Alpha), Pie-
lou’s evenness index (EH), Sheldon’s evenness index 

Table 1. Trees, small trees, and shrubs encountered in the 1 ha permanent monitoring plot. S1 (seedling) = 10 cm ≤ HT < 
100 cm; S2 (sapling) = HT ≥ 100 cm and DBH < 5 cm; S3 (young trees) = 5 cm ≤ DBH < 10 cm; S4 (medium-sized 
trees) = 10 cm ≤ DBH < 20 cm; S5 (mature trees) = DBH ≥ 20 cm. Abundance indicates the number of individuals 
in each life stage category

Species Abbreviation Life form 
Abundance

S1 S2 S3 S4 S5
Albizia kalkora (Roxb.) Prain AK Tree 44 19 0 1 0
Betula alnoides Buch-Ham BA Tree 0 6 49 22 1
Cyclobalanopsis glauca (Thunb.) Oerst. CG Tree 138 62 73 73 24
Cyclobalanopsis glaucoides Schotky CGs Tree 7 3 0 0 0
Coriaria nepalensis Wall. CN Shrub 0 0 0 1 0
Craibiodendron stellatum (Pierre) W. W. Smith CS Shrub 1 0 0 0 0
Cerasus yedoensis (Matsum.) Yu et Li CY Tree 1 4 1 0 0
Diospyros kaki Thunb. var. silvestris Makino DK Tree 2 0 4 1 0
Eurya distichophylla Hemsl. ED Small tree 12 101 75 10 0
Eurya japonica Thunb. EJ Shrub 65 31 5 0 0
Gordonia kwangsiensis Chang GK Tree 0 1 0 0 0
Keteleeria davidiana (Bertr.) Beissn. KD Tree 49 70 38 28 24
Liquidambar formosana Hance LF Tree 0 0 2 0 1
Litsea glutinosa (Lour.) C. B. Rob. LG Tree 0 1 0 0 0
Lyonia ovalifolia (Wall.) Drude var. elliptica LO Small tree 471 200 633 203 2
Myrica rubra (Lour.) S. et Zucc. MR Small tree 19 103 85 2 0
Meliosma veitchiorum Hemsl. MV Tree 3 0 0 0 0
Pinus yunnanensis Franch. var. tenuifolia Cheng et Law PY Tree 0 0 37 188 239
Quercus variabilis Bl. QV Tree 388 167 314 206 19
Rhus chinensis Mill. RC Tree 47 81 17 4 1
Schima wallichii (DC.) Choisy SW Tree 5 28 4 0 1
Vaccinium bracteatum Thunb. VB Shrub 0 1 0 2 0
Viburnum cylindricum Buch. -Ham. ex D. Don VC Small tree 0 1 0 0 0
Wendlandia uvariifolia Hance WU Small tree 7 6 1 0 0
Total 1,259 885 1,338 741 312
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(Es) and Heip’s evenness index (Eh). All indices were 
calculated for each sub-quadrat (Table 2). We then 
tested for differences in each index among life stages 
using Kruskal-Wallis (KW) tests. We assessed the de-
gree of dispersion and spatial autocorrelation within 

each index using the coefficient of variation (CV) and 
global Moran’s I, respectively. We also analyzed the 
similarity among life stages using hierarchical clus-
tering based on individual distances, and Venn dia-
grams based on species composition. Analyses were 

Table 2. Species diversity indices used to characterize tree species diversity at the stand level

Formula Index References

R = ∑S

i=11 R – richness; S – number of species Widely used

N = ∑S

i=1ni
N – abundance; ni – number of individuals of species i Widely used

H' = −∑S

i=1 pi ln( pi)
H' – Shannon-Wiener index;
pi – proportion of individuals belonging to the ith species (Hui et al. 2011)

D = 1 − ∑ pi
2 D – Simpson’s diversity index (Hui et al. 2011)

S = α ln(1 +
N

)
α

α – Fisher’s alpha diversity index (Ma 1994)

EH =
−∑ pi log pi

ln S
EH – Pielou evenness index (Ma and Liu 1994)

ES =
exp(−∑ pi ln pi)

S
Es – Sheldon evenness index (Ma and Liu 1994)

Eh =
[exp(−∑ pi ln pi) − 1]

(S − 1)
Eh – Heip evenness index (Ma and Liu 1994)

Fig. 1. Spatial patterns of species richness (R) and abundance (N) among five life stages and all trees in a pine-oak mixed-
wood forest. Life stage descriptions are provided in Table 1
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conducted in R software (https://www.r-project.org/) 
using the packages ‘vegan’ (Oksanen et al., 2019) and 
‘ggplot2’ (Wickham, 2016). Finally, we assessed re-
lationships between diversity indices and sampling 
area using EstimateS software (version 9.1.0; Colwell, 
2019), and between sub-quadrats and species distri-
butions, using non-metric multidimensional scaling.

Results
Patterns in species richness and 
abundance

There were differences between R and N with-
in life stages (i.e., all species combined) among 
sub-quadrats (Fig. 1); their CVs were 0.198–0.345 
and 0.285–0.637, respectively (Fig. 2). With increas-
ing life stage, R first increased and then decreased 
(Fig. 3, pKW < 0.01), consistent with the results of 
the hierarchical cluster analysis (Fig. 2). By contrast, 
N first decreased and then increased, followed by a 
final decrease (Fig. 2, pKW < 0.01). This change in 
N was reflective of a change in species composition, 
with both R and N decreasing for small trees and 
shrubs with increasing life stage (Fig. 3).

Spatial autocorrelation in R was largely non-sig-
nificant for all life stages (Moran’s I = 0.066–0.785, 

Fig. 1). However, N was strongly autocorrelated for 
all life stages (p = <0.001–0.04), with correspond-
ingly low Moran’s I values (0.015–0.096). Increased 
sampling area was similarly related to R in all life 
stages; an initial rapid increase followed by a more 
gradual increase (Fig. 2). N showed a linear increase, 
following the pattern of S3 > S1 > S2 > S4 > S5 
(Fig. 2).

Patterns in species diversity indices

Within life stage categories, diversity indices var-
ied substantially (Fig. 4); the mean values of H', D, 
and Alpha ranged from 0.55–1.69, 0.33–0.77, and 
1.94–3.05, with CVs of 0.09–0.67, 0.06–0.68, and 
0.25–0.63, respectively. CVs generally increased with 
life stage. There were some significant differences in 
these diversity indices among life stages (Fig. 5). The 
majority of global Moran’s I values were small and 
not significant (p > 0.05) within life stages (Fig. 4).

H' values for each of the five life stage catego-
ries showed a similar trend, i.e., increasing with in-
creased sampling area and approaching a constant 
value around 10 sub-quadrats. Among life stages, 
S2 and S5 had the highest and lowest H' values, re-
spectively, whereas S1, S3, and S4 showed similar 
values (Fig. 5). Values of D were similar to those of 
H' for four of the life stages, excluding S5, where D 

Fig. 2. Relationships of species richness (R) and abundance (N) with sampling area and life stage. Life stage descriptions 
are provided in Table 1. Red dots in the upper panels indicate the coefficients of variation (CV). The hierarchical clus-
ter diagram (e) and Venn diagram (f) show similarity among life stages based on N and overlap in species composition, 
respectively
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Fig. 3. Non-metric multidimensional scaling analysis of five life stages and all trees within the monitoring plot. Life stages 
are described in Table 1. Red numbers indicate sub-quadrat identities. The two letter codes without highlighting rep-
resent trees, those highlighted in light blue represent small trees, and those in light green represent shrubs. AK = A. 
kalkora, BA = B. alnoides, CG = C. glauca, CGs = C. glaucoides, CN = C. nepalensis, CS = C. stellatum, CY = C. yedoensis, 
DK = D. kaki, ED = E. distichophylla, EJ = E. japonica, GK = G. kwangsiensis, KD = K. davidiana, LF = L. formosana, LG 
= L. glutinosa, LO = L. ovalifolia, MR = M. rubra, MV = M. veitchiorum, PY = P. yunnanensis, QV = Q. variabilis, RC = R. 
chinensis, SW = S. wallichii, VB = V. bracteatum, VC = V. cylindricum, and WU = W. uvariifolia. Stress values are reported 
by panel, where stress represents the degree of fit in reduced dimensions (values < 0.1 are “great”, < 0.2 is “good/
ok”, and < 0.3 indicates “poor representation”)

Fig. 4. Spatial patterns of species diversity indices for five tree life stages in a pine-oak mixedwood forest. H' = Shan-
non-Wiener, D = Simpson’s, Alpha = Fisher’s alpha
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was low and nearly constant (Fig. 5). Values of Al-
pha were less consistent, with a slight change for S1 
and S2 with increased sampling area, nearly linear 
increases for S4 and S5, and a strong decrease for S3 
(Fig. 5).

Patterns in species evenness

The similarity in the distributions of the three 
evenness indices (EH, Es, Eh) within life stage cate-
gories was showed in Figure 6, and their means and 

Fig. 5. Patterns of species diversity indices by tree life stage and sampling area. Red dots in the upper panels represent the 
coefficients of variation (CVs). H' = Shannon-Wiener, D = Simpson’s, Alpha = Fisher’s alpha

Fig. 6. Spatial patterns of species evenness indices among five tree life stages. EH = Pielou’s evenness index, Es = Shel-
don’s evenness index, Eh = Heip’s evenness index
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associated CVs (in parentheses) among sub-quadrats 
were 0.61–0.85 (0.07–0.35), 0.61–0.75 (0.19–0.27), 
and 0.52–0.71 (0.15–0.44), respectively. However, 
there were significant differences in the three even-
ness indices among life stages (pKW < 0.01). Exclud-
ing S2, all life stages had small, non-significant Mo-
ran’s I values (p > 0.05). Evenness indices gradually 
decreased within each life stage with increased sam-
pling area. Generally, evenness indices were similar 
within S1 and S3, with larger values seen for S2 and 
S4, and smaller ones for S5 (Fig. 7).

Discussion
Species richness and abundance among 
life stages

R and N are among the oldest and most intuitive 
species diversity indices. The pattern of these indices 
between S1 and S2 seen in this study indicated low 
seedling survival rates. This is potentially a result of 
negative density dependence, wherein conspecific in-
dividuals die due to resource competition, disease, or 
pests, and the overall number of individuals decreas-
es (Inman-Narahari et al., 2016; Lin et al., 2017; Li 
et al., 2020a). There was evidence of high intraspe-
cific aggregation (clustering) in S1 for populations 
of L. ovalifolia (LO), Q. variabilis (QV), and C. glauca 

(CG), and these three species combined accounted 
for nearly 80% of all individuals within this life stage. 
Variability in early life stages is common (Clark et al., 
1999), as seedlings have limited ability to cope with 
adversity and many environmental factors, such as 
light limitation, substrate availability, and soil organ-
ic matter content, can reduce their R and N (Barna 
& Bosela, 2015; Liira et al., 2017; Lin et al., 2017; 
Dyderski & Jagodziński, 2020). The life stage cate-
gories that we used precluded shrubs and small trees 
from being classified as S5, as these plants rarely if 
ever enter the upper canopy layer. Results from nat-
ural forests in tropical and subtropical regions sup-
port our findings, in that R and N tend to decrease in 
the upper canopy (Feroz et al., 2016; Shankar, 2019). 
The progression from S3 to S5 is associated with in-
creased competition and mortality, which can reduce 
both R and N (Li et al., 2019). Other factors, such as 
stand origin, floral and faunal communities, geogra-
phy and climate, and disturbance may also influence 
the pattern and quantitative relationships of R and N 
among life stages (D’Amato et al., 2009; Ostertag et 
al., 2014; Jin et al., 2019; Ray et al., 2021).

R and N are tightly related to sampling area. The 
species-area curves documented here are consistent 
with those reported in a wide variety of natural forests 
in different regions (Hui et al., 2011; Ostertag et al., 
2014; Feroz et al., 2016; Shankar, 2019); even some 
managed forest stands show similar patterns (Li et 

Fig. 7. Patterns in species evenness indexes by tree life stage and sampling area. Red dots in the upper panels represent 
the coefficients of variation (CVs). EH = Pielou’s evenness index, Es = Sheldon’s evenness index, Eh = Heip’s evenness 
index
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al., 2021; Xi et al., 2021). Generally, small patches 
of uniform habitat may be suitable for many species, 
but limitations in carrying capacity mean that overall 
N is largely dictated by individual species densities 
(Preston, 1962). Although R is not additive, N is (He 
et al., 2002), which explains why R and N are highly 
correlated at small scales, but show only a weak or 
no correlation at large scales (He et al., 2002; Wang 
et al., 2007; Li et al., 2016). As sampling area further 
increases, there are fewer gains in niche space, so the 
rate of increase in R declines and the curve flattens 
(Turner & Tjørve, 2005; Li et al., 2016). We found 
that both R and N were determinants of the patterns 
in species-area and abundance-area curves, which 
contradicted our second hypothesis.

Species diversity among life stages

Species diversity indices (e.g., H', D, and Alpha) 
are widely used to assess diversity in many ecosys-
tems. These indices assign different weights to com-
mon and rare species; some emphasize the former 
and others the latter (Hill, 1973; Hui et al., 2011; 
Hui & Pommerening, 2014). H', D, and R showed 
similar patterns across the five life stage categories 
in this study, reflecting the close relationships among 
these indices. Some natural forests have highly sim-
ilar characteristics (Li et al., 2016; Shankar, 2019), 
but in some cases H' is nearly constant across vertical 
strata, which may be a product of decreased R and 
increased evenness (Feroz et al., 2016). Yue (1999) 
discussed a critical defect in H'; that is, when pi < 
0.368, H' increases with an increase in pi; otherwise, 
H' decreases with an increase in pi. Therefore, differ-
ences in pi preclude congruency among H' and other 
indices. Alpha is positively proportional to both R 
and N (Ma, 1994), and we found low variation in Al-
pha among life stages. Although Alpha is considered 
to be an excellent indicator of species diversity (Ma, 
1994), we found it to be less sensitive than H' or D in 
our study, particularly for the adult stage (S5).

All three diversity indices increased with in-
creased sampling area. Our rarefaction curve sug-
gested that 90% of the species diversity in our 1 
ha plot could be predicted from approximately 10 
sub-quadrats (20  m  ×  20  m), and these diversity 
indices reached their maximum values much earlier 
than R. This highlights the importance of careful in-
dex selection when assessing stand-level species di-
versity. Although other studies have reported similar 
findings (Ostertag et al., 2014), still others found a 
decrease in H' with increased sampling area, and cau-
tioned against its use for evaluating plant diversity 
from single or multiple plots with a small total area 
(He et al., 2002; Yang et al., 2012). The species-area 
curves of saplings (S2) and adults (S5) were distinct 
from those of the other life stages in this study. Our 

results indicate that small-sized trees were the main 
drivers of species diversity at the stand-level, evi-
denced by greater R and few individuals per species 
within this class. Generally, understory species diver-
sity is much greater than that of the upper canopy 
in subtropical forests, potentially reflecting second-
ary patterns of regional vegetation (Wu et al., 2010; 
Shankar, 2019). Population sizes in the S5 category 
showed a marked decline from preceding life stages. 
PY, a shade-intolerant colonizer of burned areas (Li et 
al., 2017; 2020a), dominated the canopy in our study 
area, with little representation of broad-leaved spe-
cies (Li et al., 2020b). Our study forest of pine-oak 
mixedwood is in an early successional stage, so its 
diversity was much lower than that of old growth for-
ests, particularly in tropical regions (He et al., 1996; 
2002; Inman-Narahari et al., 2016; Shankar, 2019).

Species evenness among life stages

Species evenness indices reflect N ratios. In our 
study, there were no clear patterns across life stag-
es in EH, Es, or EH. This indicates that the balance 
in interspecific N may decline with declining R. This 
may be related to the dominance of a small number 
of species in each life stage, which may reinforce im-
balances among species and reduce species diversity 
(Stein et al., 2014). Intraspecific competition is an 
important driver of succession in mixed stands (Li 
et al., 2020b). Evenness generally decreases with 
vertical stratification, reflecting patterns in older 
to younger life stages (Feroz et al., 2016; Shankar, 
2019); this differs from our findings, where both bi-
otic and abiotic factors may contribute to this pat-
tern. However, we note that all three evenness in-
dices displayed clear scale-dependency. This finding 
is consistent with results from a large (320.5 ha) 
rainforest monitoring plot in Uganda (Mwavu & 
Witkowski, 2015). One possible explanation for this 
pattern is that dominant populations, particularly 
of small-sized tree species in the understory, show 
highly clustered distributions (Li et al., 2020b), such 
that increasing scale (area) exacerbates the observed 
balance in interspecific N. In a report from the same 
study plot, Li et al (2020b) observed that some spe-
cies dominated in the upper portion (upslope) of the 
plot, whereas others dominated in the lower slope. 
Horizontal distribution patterns may relate to spe-
cies diversity patterns in the vertical plane (Feroz et 
al., 2016), which indirectly supports our findings.

Conclusion

Species diversity reflects the heterogeneity of for-
ests in terms of species composition, structure, func-
tion, and dynamics through space and time. Diversity 
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is also inextricably linked to scale. It is important to 
first understand the organization and structure of 
forest communities to in turn understand mecha-
nisms promoting species coexistence. Here, we as-
sessed spatial patterns of species diversity among 
five life stages in a secondary forest stand in the Nan-
pan River Basin in southwest China. We found that 
trees in different life stages may play different roles 
in the maintenance of species diversity at the stand 
scale. Generally, seedlings were highly affected by re-
source availability, and diversity varied substantially 
across space. The R and N of small-sized individuals 
(i.e., classes S2 and S3) were both high, reflecting a 
substantial contribution to stand-level diversity, but 
diversity and species stability was decreased in the 
adult life stage (S5). The scale dependency of spe-
cies diversity varied among life stages. Therefore, it 
is important to use multiple indices to assess the full 
scope of diversity within forests. We noted signifi-
cant variation in diversity among sub-quadrats and 
life stages, with weak spatial autocorrelation among 
sub-quadrats, indicating differences in ecological 
patterns and processes across space and time. The 
management and conservation of forest biodiversity 
should consider life stages in future.
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