PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 62 | 4 |

Tytuł artykułu

The role of particular ticks developmental stages in the circulation of tick-borne pathogens in Central Europe. 4. Anaplasmataceae

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In Central European conditions, two species of Anaplasmataceae have epidemiological significance – Candidatus Neoehrlichia micurensis and Anaplasma phagocytophilum. Tick Ixodes ricinus is considered as their main vector, wild mammals as the animal reservoir. There is presented the transstadial transmission in ticks, due to the lack of transovarial mode the circulation goes mainly between immature ticks and hosts; pathogen circulates primarily in the cycle: infected rodent → the tick larva → the nymph → the mammal reservoir → the larva of the tick. The tick stages able to effectively infect human are nymphs and adult females, males do not participate in the follow transmission. The summary of available data of different A. phagocytophilum strains associations with different hosts revealed at least few distinct enzootic cycle, concern the same ticks species and different mammal hosts. It is possible to reveal in Central Europe the existence of at least three different epidemiological transmission cycles of A. phagocytophilum. The first cycle involves strains pathogenic for human and identical strains from horses, dogs, cats, wild boars, hedgehogs, possibly red foxes. The second cycle involves deer, European bison and possibly domestic ruminants. The third cycle contains strains from voles, shrew and possibly Apodemus mice. In Western Europe voles might be involved in separate enzootic cycle with Ixodes trianguliceps as the vector.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

62

Numer

4

Opis fizyczny

p.267-284,fig.,ref.

Twórcy

autor
  • W.Stefanski Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
autor
  • Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519 Gdynia, Poland
autor
  • Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519 Gdynia, Poland
autor
  • W.Stefanski Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
  • W.Stefanski Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
autor
  • W.Stefanski Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
  • Department of Biochemistry and Molecular Biology, University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland

Bibliografia

  • [1] Dumler J.S., Barbet A.F., Bekker C.P.J., Dasch G.A., Palmer G.H., Ray S.C., Rikihisa Y., Rurangirwa F.R. 2001. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. International Journal of Systematic and Evolutionary Microbiology 51: 2145-2165.
  • [2] Demma L.J., Olman R.C., Mcquiston J.H., Krebs J.W., Swerdlow D.L. 2005. Epidemiology of human ehrlichiosis and anaplasmosis in the United States, 2001-2002. American Journal of Tropical Medicine and Hygiene 73: 400-409.
  • [3] Woldehiwet Z. 2010. The natural history of Anaplasma phagocytophilum. Veterinary Parasitolo gy 167: 108-122.
  • [4] Blaňarová L., Stanko M., Carpi G., Miklisová D., Víchová B., Mošanský L., Bona M., Derdáková M. 2014. Distinct Anaplasma phagocytophilum genotypes associated with Ixodes trianguliceps ticks and rodents in Central Europe. Ticks and Tick-borne Diseases 5: 928-938.
  • [5] Kawahara M., Rikihisa Y., Isogai E., Takahashi M., Misumi H., Suto C., Shibata S., Zhang C., Tsuji M. 2004. Ultrastructure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis’ in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. International Journal of Systematic and Evolutionary Microbiology 54: 1837-1843.
  • [6] von Loewenich F.D., Geissdörfer W., Disqué C., Matten J., Schett G., Sakka S.G., Bogdan C. 2010. Detection of „Candidatus Neoehrlichia mikurensis” in two patients with severe febrile illnesses: evidence for a European sequence variant. Journal of Clinical Microbiology 48: 2630-2635.
  • [7] Li H., Jiang J.F., Liu W., Zheng Y.C., Huo Q.B., Tang K., Zuo S.Y., Liu K., Jiang B.G., Yang H., Cao W.C. 2012. Human infection with Candidatus Neoehrlichia mikurensis, China. Emerging Infectious Diseases 18: 1636-1639.
  • [8] Rar V., Golovljova I. 2011. Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infection, Genetics and Evolution 11: 1842-1861.
  • [9] Silaghi C., Beck R., Oteo J.A., Pfeffer M., Sprong H. 2016. Neoehrlichiosis: an emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis. Experimental and Applied Acarology 68: 279-297.
  • [10] Kowalec M., Welc-Falęciak R., Karbowiak G., Szewczyk T., Bajer A., Siński E. 2013. The coexistence of pathogenic microparasites Babesia spp. and ‘Candidatus Neoehrlichia mikurensis’ in Ixodes ricinus ticks from forests under different levels of anthropopression. Annals of Parasitology 59 (suppl.): 175.
  • [11] Glatz M., Müllegger R.R., Maurer F., Fingerle V., Achermann Y., Wilske B., Bloemberg G.V. 2014. Detection of Candidatus Neoehrlichia mikurensis, Borrelia burgdorferi sensu lato genospecies and Anaplasma phagocytophilum in a tick population from Austria. Ticks and Tick-borne Diseases 5: 139-144.
  • [12] Welc-Falęciak R., Kowalec M., Karbowiak G., Bajer A., Behnke M.J., Siński E. 2014. Rickettsiaceae and Anaplasmataceae infections in Ixodes ricinus ticks from urban and natural forested areas of Poland. Parasites and Vectors 7: 121.
  • [13] Movila A., Alekseev A.N., Dubinina H.V., Toderas I. 2013. Detection of tick-borne pathogens in ticks from migratory birds in the Baltic region of Russia. Medical and Veterinary Entomology 27: 113-117.
  • [14] Naitou H., Kawaguchi D., Nishimura Y., Inayoshi M., Kawamori F., Masuzawa T., Hiroi M., Kurashige H., Kawabata H., Fujita H., Ohashi N. 2006. Molecular identification of Ehrlichia species and ‘Candidatus Neoehrlichia mikurensis’ from ticks and wild rodents in Shizuoka and Nagano Prefectures, Japan. Microbiology and Immunology 50: 45-51.
  • [15] Jahfari S., Coipan E.C., Fonville M., van Leeuwen A.D., Hengeveld P., Heylen D., Heyman P., van Maanen C., Butler C.M., Földvári G., Szekeres S., van Duijvendijk G., Tack W., Rijks J.M., van der Giessen J., Takken W., van Wieren S.E., Takumi K., Sprong H. 2014. Circulation of four Anaplasma phagocy tophilum ecotypes in Europe. Parasites and Vectors 15: 365.
  • [16] Venclíková K., Mendel J., Betášová L., Blažejová H., Jedličková P., Straková P., Hubálek Z., Rudolf I. 2016. Neglected tick-borne pathogens in the Czech Republic, 2011-2014. Ticks and Tick-borne Diseases 7: 107-112.
  • [17] Víchová B., Majláthová V., Nováková M., Stanko M., Hviščová I., Pangrácová L., Chrudimský T., Čurlík J., Peťko B. 2014. Anaplasma infections in ticks and reservoir host from Slovakia. Infection, Genetics and Evolution 22: 265-272.
  • [18] Burri C., Schumann O., Schumann C., Gern L. 2014. Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum? Ticks and Tick-borne Diseases 5: 245-251.
  • [19] Obiegala A., Pfeffer M., Pfister K., Tiedemann T., Thiel C., Balling A., Karnath C., Woll D., Silaghi C. 2014. Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum: prevalences and investigations on a new transmission path in small mammals and ixodid ticks. Parasites and Vectors 4: 563.
  • [20] Beck R., Čubrić Čurik V., Račić I., Šprem N., Vujnović A. 2014. Identification of ‘Candidatus Neoehrlichia mikurensis ’ and Anaplasma species in wildlife from Croatia. Parasites and Vectors 7 (suppl. 1): O28.
  • [21] Dugat T., Chastagner A., Lagrée A-C., Petit E., Durand B., Thierry S., Corbière F., Verheyden H., Chabanne L., Bailly X., Leblond A., Vourc’h G., Boulouis H-J., Maillard R., Haddad N. 2014. A new multiple-locus variable-number tandem repeat analysis reveals different clusters for Anaplasma phagocytophilum circulating in domestic and wild ruminants. Parasites and Vectors 7: 439.
  • [22] Łukaszewska J., Adaszek Ł., Winiarczyk S. 2008. Obraz krwi w przebiegu anaplazmozy granulocytarnej u psów i koni [Hematological changes in granulocytic anaplasmosis in dogs and horses]. Życie Weterynaryjne 83: 827-831.
  • [23] Adaszek Ł., Kotowicz W., Klimiuk P., Górna M., Winiarczyk S. 2011. Ostry przebieg anaplazmozy granulocytarnej u psa – przypadek własny [Severe granulocytic anaplasmosis in a dog – a case study]. Weterynaria w praktyce 8: 59-62.
  • [24] Adaszek Ł., Policht K., Górna M., Kutrzuba J., Winiarczyk S. 2011. Pierwszy w Polsce przypadek anaplazmozy (erlichiozy) granulocytarnej u kota [The first case of anaplasmosis (ehrlichiosis) in cat in Poland]. Życie Weterynaryjne 86: 132-134.
  • [25] Stuen S., Granquist E.G., Silaghi C. 2013. Anaplasma phagocytophilum – a widespread multihost pathogen with highly adaptive strategies. Frontiers in Cellular and Infection Microbiology 3: 31.
  • [26] Čabanová V., Pantchev N., Hurníková Z., Miterpáková M. 2015. Recent study on canine vectorborne zoonoses in southern Slovakia – serologic survey. Acta Parasitologica 60: 749-758.
  • [27] Slivinska K., Víchová B., Werszko J., Szewczyk T., Wróblewski Z., Peťko B., Ragač O., Demeshkant V., Karbowiak G. 2016. Molecular surveillance of Theileria equi and Anaplasma phagocytophilum infections in horses in some regions of Ukraine, Poland and Slovakia: preliminary study. Veterinary Parasitology 215: 35-37.
  • [28] Chen S-M., Dumler J.S., Bakken J.S., Walker D.H. 1994. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. Journal of Clinical Microbiology 32: 589-595.
  • [29] Lotrič-Furlan S., Avsic-Zupanc T., Petrovec M., Nicholson W.L., Sumner J.W., Childs J.E., Strle F. 2001. Clinical and serological follow-up of patients with human granulocytic ehrlichiosis in Slovenia. Clinical and Diagnostic Laboratory Immunology 8: 899-903.
  • [30] Parola Ph. 2004. Tick-borne rickettsial diseases. Comparative Imunology, Microbiology and Infectious Diseases 27: 297-304.
  • [31] Grzeszczuk A., Stańczak J., Kubica-Biernat B., Racewicz M., Kruminis-Łozowska W., Prokopowicz D. 2004. Human anaplasmosis in north-eastern Poland: seroprevalence in humans and prevalence in Ixodes ricinus ticks. Annals of Agricultural and Environmental Medicine 11: 99-103.
  • [32] Grzeszczuk A. 2006. Anaplasma phagocytophilum in Ixodes ricinus ticks and human granulocytic anaplasmosis seroprevalence among forestry rangers in Białystok region. Advances in Medical Sciences 51: 283-286.
  • [33] Socolovschi C., Mediannikov O., Raoult D., Parola P. 2009. Update on tick-borne bacterial diseases in Europe. Parasite 16: 259-273.
  • [34] Hartelt K., Oehme R., Frank H., Brockmann S.O., Hassler D., Kimmig P. 2004. Pathogens and symbionts in ticks: prevalence of Anaplasma phagocytophilum (Ehrlichia sp.), Wolbachia sp., Rickettsia sp., and Babesia sp. in Southern Germany. International Journal of Medical Microbiology 293 (suppl. 37): 86-92.
  • [35] Asman M., Nowak M., Cuber P., Strzelczyk J., Szilman E., Szilman P., Trapp G., Siuda K., Solarz K., Wiczkowski A. 2013. The risk of exposure to Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Babesia sp. and co-infections in Ixodes ricinus ticks on the territory of Niepolomice Forest (southern Poland). Annals of Parasitology 59: 13-19.
  • [36] Grzeszczuk A., Ziarko S., Prokopowicz D., Radziwon P. M. 2004. Zakażenie żubrów z Puszczy Białowieskiej bakteriami Anaplasma phagocytophilum [Evidence of Anaplasma phagocytophilum infection of European bisons in the Białowieża Primewal Forest, Poland]. Medycyna Weterynaryjna 60: 600-601.
  • [37] Chmielewska-Badora J., Zwoliński J., Cisak E., Wójcik-Fatla A., Buczek A., Dutkiewicz J. 2007. Prevalence of Anaplasma phagocytophilum in Ixodes ricinus ticks determined by polymerase chain reaction with two pairs of primers detecting 16S rRNA and ankA genes. Annals of Agricultural and Environmental Medicine 14: 281-285.
  • [38] Sytykiewicz H., Karbowiak G., Hapunik J., Szpechciński A., Supergan-Marwicz M., Goławska S., Sprawka I., Czerniewicz P. 2012. Molecular evidence of Anaplasma phagocytophilum and Babesia microti co-infections in Ixodes ricinus ticks in central-eastern region of Poland. Annals of Agricultural and Environmental Medicine 19: 45-49.
  • [39] Bown K.J., Lambin X., Ogden N.H., Begon M., Telford G., Woldehiwet Z., Birtles R.J. 2009. Delineating Anaplasma phagocytophilum ecotypes in coexisting, discrete enzootic cycles. Emerging Infectious Diseases 15: 1948-1954.
  • [40] Duh D., Slovák M., Saksida A., Strašek K., Petrovec M., Avšič-Županc T. 2006. Molecular detection of Babesia canis in Dermacentor reticulatus ticks collected in Slovakia. Biologia 61: 231-233.
  • [41] Wirtgen M., Nahayo A., Linden A., Garigliany M., Desmechtl D. 2011. Detection of Anaplasma phagocytophilum in Dermacentor reticulatus ticks. Veterinary Record 168: 195.
  • [42] Karbowiak G., Víchová B., Slivinska K., Werszko J., Didyk J., Peťko B., Stanko M., Akimov I. 2014. The infection of questing Dermacentor reticulatus ticks with Babesia canis and Anaplasma phagocytophilum in the Chernobyl exclusion zone. Veterinary Parasitology 204: 372-375.
  • [43] Paulauskas A., Radzijevskaja J., Rosef O. 2012. Molecular detection and characterization of Anaplasma phagocytophilum strains. Comparative Immunology Microbiology and Infectious Diseases 35: 187-195.
  • [44] Sixl W., Petrovec M., Marth E., Wüst G., Stünzner D., Schweiger R., Avšič-Županc T. 2003. Investigation of Anaplasma phagocytophila infections in Ixodes ricinus and Dermacentor reticulatus ticks in Austria. Annals of the New York Academy of Sciences 990: 94-97.
  • [45] Hulínská D., Langrová K., Pejčoch M., Pavlásek I. 2004. Detection of Anaplasma phagocytophilum in animals by real-time polymerase chain reaction. APMIS 112: 239-247.
  • [46] Stańczak J., Gabre R.M., Kruminis-Łozowska W., Racewicz M., Kubica-Biernat B. 2004. Ixodes ricinus as a vector of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in urban and suburban forests. Annals of Agricultural and Environmental Medicine 11: 109-114.
  • [47] Silaghi C., Gilles J., Höhle M., Fingerle V., Just F.T., Pfister K. 2008. Anaplasma phagocytophilum infection in Ixodes ricinus, Bavaria, Germany. Emerging Infectious Diseases 14: 972-974.
  • [48] Overzier E., Pfister K., Herb I., Mahling M., Böck G. Jr., Silaghi C. 2013. Detection of tick-borne pathogens in roe deer (Capreolus capreolus), in questing ticks (Ixodes ricinus), and in ticks infesting roe deer in southern Germany. Ticks and Tick-borne Diseases 4: 320-328.
  • [49] Siuda K. 1993. Ticks of Poland (Acari: Ixodida). Polish Parasitological Society, Warszawa, Poland. (in Polish)
  • [50] Alberdi M.P., Walker A.R., Urquhart K.A. 2000. Field evidence that roe deer (Capreolus capreolus) are a natural host for Ehrlichia phagocytophila. Epidemiology and Infection 124: 315-323.
  • [51] Adamska M. 2006. DNA Anaplasma phagocytophilum we krwi saren oraz w pozyskanych z nich kleszczach [Detecting Anaplasma phagocytophilum DNA in blood of roe deer and in ticks]. Medycyna Weterynaryjna 62: 201-203.
  • [52] Zeman P., Pecha M. 2008. Segregation of genetic variants of Anaplasma phagocytophilum circulating among wild ruminants within a Bohemian forest (Czech Republic). International Journal of Medical Microbiology 298 (suppl. 1): 203-210.
  • [53] Skotarczak B., Adamska M., Sawczuk M., Maciejewska A., Wodecka B., Rymaszewska A. 2008. Coexistence of tick-borne pathogens in game animals and ticks in western Poland. Veterinarni Medicina 53: 668-675.
  • [54] Stefanidesova K., Kocianova E., Boldis V., Kostanova Z., Kanka P., Nemethova D., Spitalska E. 2008. Evidence of Anaplasma phagocytophilum and Rickettsia helvetica infection in free-ranging ungulates in central Slovakia. European Journal of Wildlife Research 54: 519-524.
  • [55] Hapunik J., Víchová B., Karbowiak G., Wita I., Bogdaszewski M., Peťko B. 2011. Wild and farm breeding cervids infections with Anaplasma phagocytophilum. Annals of Agricultural and Environmental Medicine 18: 73-77.
  • [56] Welc-Falęciak R., Werszko J., Cydzik K., Bajer A., Michalik J., Behnke J.M. 2013. Co-infection and genetic diversity of tick-borne pathogens in roe deer from Poland. Vector Borne and Zoonotic Diseases 13: 277-288.
  • [57] Michalik J., Stańczak J., Cieniuch S., Racewicz M., Sikora B., Dabert M. 2012. Wild boars as hosts of human-pathogenic Anaplasma phagocytophilum variants. Emerging Infectious Diseases 18: 998-1001.
  • [58] Karbowiak G., Víchová B., Werszko J., Demiaszkiewicz A.W., Pyziel A.M., Sytykiewicz H., Szewczyk T., Peťko B. 2015. The infection of reintroduced ruminants – Bison bonasus and Alces alces – with Anaplasma phagocytophilum in northern Poland. Acta Parasitologica 60: 645-648.
  • [59] Karbowiak G., Víchová B., Majláthová V., Hapunik J., Peťko B. 2009. Anaplasma phagocytophilum infection of red foxes (Vulpes vulpes). Annals of Agricultural and Environmental Medicine 16: 299-300.
  • [60] Härtwig V., von Loewenich F.D., Schulze C., Straubinger R.K., Daugschies A., Dyachenko V. 2014. Detection of Anaplasma phagocytophilum in red foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) from Brandenburg, Germany. Ticks and Tick-borne Diseases 5: 277-280.
  • [61] Grzeszczuk A., Karbowiak G., Ziarko S., Kovalchuk O. 2006. The toot-vole Microtus oeconomus (Pallas, 1776): a new potential reservoir of Anaplasma phagocytophilum. Vector-Borne and Zoonotic Diseases 6: 240-243.
  • [62] Kallio E.R., Begon M., Birtles R.J., Bown K.J., Koskela E., Mappes T., Watts P.C. 2014. First report of Anaplasma phagocytophilum and Babesia microti in rodents in Finland. Vector borne and Zoonotic Diseases 14: 389-393.
  • [63] Svitálková Z., Haruštiaková D., Mahríková L., Berthová L, Slovák M., Kocianová E., Kazimírová M. 2015. Anaplasma phagocytophilum prevalence in ticks and rodents in an urban and natural habitat in South-Western Slovakia. Parasites and Vectors 8: 276.
  • [64] Huhn C., Winter C., Wolfsperger T., Wüppenhorst N., Strašek Smrdel K., Skuballa J., Pfäffle M., Petney T., Silaghi C., Dyachenko V., Pantchev N., Straubinger R.K., Schaarschmidt-Kiener D., Ganter M., Aardema M.L., von Loewenich F.D. 2014. Analysis of the population structure of Anaplasma phagocytophilum using multilocus sequence typing. PLoS One 9: e93725.
  • [65] Massung R.F., Priestley R.A., Miller N.J., Mather T.N., Levin M.L. 2003. Inability of a variant strain of Anaplasma phagocytophilum to infect mice. Journal of Infectious Diseases 188: 1757-1763.
  • [66] Rymaszewska A. 2008. Divergence within the marker region of the groESL operon in Anaplasma phagocytophilum. European Journal of Clinical Microbiology and Infectious Diseases 27: 1025-1036.
  • [67] Rymaszewska A. 2011. PCR for detection of tickborne Anaplasma phagocytophilum pathogens: a review. Veterinarni Medicina 56: 529-536.
  • [68] Massung R.F., Lee K., Mauel M., Gusa A. 2002. Characterization of the rRNA genes of Ehrlichia chaffeensis and Anaplasma phagocytophila. DNA and Cell Biology 21: 587-596.
  • [69] Stańczak J., Cieniuch S., Lass A., Biernat B., Racewicz M. 2015. Detection and quantification of Anaplasma phagocytophilum and Babesia spp. in Ixodes ricinus ticks from urban and rural environment, nothern Poland, by real-time polymerase chain reaction. Experimental and Applied Acarology 66: 63-81.
  • [70] Strašek Smrdel K., von Loewenich F.D., Petrovec M., Avšič Županc T. 2015. Diversity of ankA and msp4 genes of Anaplasma phagocytophilum in Slovenia. Ticks and Tick-borne Diseases 6: 164-166.
  • [71] Petrovec M., Bidovec A., Sumner J.W., Nicholson W.L., Childs J.E., Avšič-Županc T. 2002. Infection with Anaplasma phagocytophila in cervids from Slovenia: evidence of two genotypic lineages. Wiener Klinische Wochenschrift 114/113: 641-647.
  • [72] Sumner J.W., Nicholson W.L., Massung R.F. 1997. PCR amplifcation and comparison of nucleotide sequences from the groESL heat shock operon of Ehrlichia species. Journal of Clinical Microbiology 35: 2087-2092.
  • [73] Petrovec M., Sixl W., Schweiger R., Mikulasek S., Elke L., Wüst G., Marth E., Strasek K., Stünzner D., Avsic-Zupanc T. 2003. Infections of wild animals with Anaplasma phagocytophila in Austria and the Czech Republic. Annals of the New York Academy of Sciences 990: 103-106.
  • [74] Shukla S.K., Aswani V., Stockwell P.J., Reed K.D. 2007. Contribution of polymorphisms in ankA, gltA, and groESL in defining genetic variants of Anaplasma phagocytophilum. Journal of Clinical Microbiology 45: 2312-2315.
  • [75] Katargina O., Geller J., Alekseev A., Dubinina H., Efremova G., Mishaeva N., Vasilenko V., Kuznetsova T., Järvekülg L., Vene S., Lundkvist A., Golovljova I. 2012. Identification of Anaplasma phagocytophilum in tick populations in Estonia, the European part of Russia and Belarus. Journal of Clinical Microbiology and Infections 18: 40-46.
  • [76] Stuen S., Moum T., Petrovec M., Schouls L.M. 2006. Genetic variants of Anaplasma phagocytophilum in Norway. International Journal of Medical Microbiology 296 (suppl. 1): 164-166.
  • [77] Strasek Smrdel K., Bidovec A., Malovrh T., Petrovec M., Duh D., Avsic Zupanc T. 2009. Detection of Anaplasma phagocytophilum in wild boar in Slovenia. Clinical Microbiology and Infection 15 (suppl. 2): 50-52.
  • [78] Dumler J.S., Choi K.S., Garcia-Garcia J.C., Barat N.S., Scorpio D.G., Garyu J.W., Grab D.J., Bakken J.S. 2005. Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerging Infectious Diseases 11: 1828-1834.
  • [79] de la Fuente J., Massung R.F., Wong S.J., Chu F.K., Lutz H., Meli M., von Loewenich F.D., Grzeszczuk A., Torina A., Caracappa S., Mangold A.J., Naranjo V., Stuen S., Kocan K.M. 2005. Sequence analysis of the msp4 gene of Anaplasma phagocytophilum strains. Journal of Clinical Microbiology 43: 1309-1017.
  • [80] Scharf W., Schauer S., Freyburger F., Petrovec M., Schaarschmidt-Kiener D., Liebisch G., Runge M., Ganter M., Kehl A., Dumler J.S., Garcia-Perez A.L., Jensen J., Fingerle V., Meli M.L., Ensser A., Stuen S., von Loewenich F.D. 2011. Distinct host species correlate with Anaplasma phagocytophilum ankA gene clusters. Journal of Clinical Microbiology 49: 790-796.
  • [81] Michalik J., Stańczak J., Racewicz M., Cieniuch S., Sikora B., Szubert-Kruszyńska A., Grochowalska R. 2009. Molecular evidence of Anaplasma phagocytophilum infection in wild cervids and feeding Ixodes ricinus ticks from west-central Poland. Clinical Microbiology and Infection 15: 81-83.
  • [82] Majazki J., Wüppenhorst N., Hartelt K., Birtles R., von Loewenich F.D. 2013. Anaplasma phagocytophilum strains from voles and shrews exhibit specific ankA gene sequences. BMC Veterinary Research 9: 235.
  • [83] Nicholas K.B., Nicholas Jr H.B., Deerfield D.W. 1997. GeneDoc: analysis and visualization of genetic variation. Embnew. News 4: 144.
  • [84] Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.
  • [85] Swofford D.L., Waddell P.J., Huelsenbeck J.P., Foster P.G., Lewis P.O., Rogers J.S. 2001. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Systematic Biology 50: 525-539.
  • [86] Liz J.S., Anderes L., Sumner J.W., Massung R.F., Gern L., Rutti B., Brossard M. 2000. PCR detection of granulocytic ehrlichiae in Ixodes ricinus ticks and wild small mammals in western Switzerland. Journal of Clinical Microbiology 38: 1002-1007.
  • [87] Bown K.J., Begon M., Bennett M., Birtles R. J., Burthe S., Lambin X., Telfer S., Woldehiwet Z., Ogden N.H. 2006. Sympatric Ixodes trianguliceps and Ixodes ricinus ticks feeding on field voles (Microtus agrestis): Potential for increased risk of Anaplasma phagocytophilum in the United Kingdom? Vector-Borne and Zoonotic Diseases 6: 404-410.
  • [88] Stanko M., Krasnov B.R., Miklisova D., Morand S. 2007. Simple epidemiological model predicts the relationships between prevalence and abundance in ixodid ticks. Parasitology 134: 59-68.
  • [89] Bown K.J., Lambin X., Telford G., Heyder-Bruckner D., Ogden N.H., Birtles R.J. 2011. The common shrew (Sorex araneus): a neglected host of tick-borne infections? Vector Borne and Zoonotic Diseases 11: 947-953.
  • [90] Nowak-Chmura M., Siuda K. 2012. Ticks of Poland: review of contemporary issues and latest research. Annals of Parasitology 58: 125-155.
  • [91] Bown K.J., Begon M., Bennett M., Woldehiwet Z., Ogden N.H. 2003. Seasonal dynamics of Anaplasma phago cytophila in a rodent-tick (Ixodes trianguliceps) system, United Kingdom. Emerging Infectious Diseases 9: 63-70.
  • [92] Gajda E., Woźniak M., Buńkowska-Gawlik K., Perec-Matysiak A., Hildebrand J., Kváč M. 2013. Anaplasma phagocytophilum in wild rodent populations from areas of Lower Silesia, Poland. Annals of Parasitology 59 (suppl.): 170.
  • [93] Skuballa J., Petney T., Pfäffle M., Taraschewski H. 2010. Molecular detection of Anaplasma phagocytophilum in the european hedgehog (Erinaceus europaeus) and its ticks. Vector-Borne and Zoonotic Diseases 10: 1055-1057.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a8a21c33-ffd5-4758-a0d2-6b716e80994e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.