PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 70 | 1 |

Tytuł artykułu

Stereolithographic biomodelling to create tangible hard copies of the ethmoidal labyrinth air cells based on the visible human project

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Rapid prototyping (RP), or stereolithography, is a new clinical application area, which is used to obtain accurate three-dimensional physical replicas of complex anatomical structures. The aim of this study was to create tangible hard copies of the ethmoidal labyrinth air cells (ELACs) with stereolithographic biomodelling. The visible human dataset (VHD) was used as the input imaging data. The Surfdriver software package was applied to these images to reconstruct the ELACs as three- -dimensional DXF (data exchange file) models. These models were post-processed in 3D-Doctor software for virtual reality modelling language (VRML) and STL (Standard Triangulation Language) formats. Stereolithographic replicas were manufactured in a rapid prototyping machine by using the STL format. The total number of ELACs was 21. The dimensions of the ELACs on the right and left sides were 52.91 x 13.00 x 28.68 mm and 53.79 x 12.42 x 28.55 mm, respectively. The total volume of the ELACs was 4771.1003 mm³. The mean ELAC distance was 27.29 mm from the nasion and 71.09 mm from the calotte topologically. In conclusion, the combination of Surfdriver and 3D-Doctor could be effectively used for manufacturing 3D solid models from serial sections of anatomical structures. Stereolithographic anatomical models provide an innovative and complementary tool for students, researchers, and surgeons to apprehend these anatomical structures tangibly. The outcomes of these attempts can provide benefits in terms of the visualization, perception, and interpretation of the structures in anatomy teaching and prior to surgical interventions. (Folia Morphol 2011; 70, 1: 33–40)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

70

Numer

1

Opis fizyczny

p.33-40,fig.,ref.

Twórcy

autor
  • Department of Anatomy, Faculty of Medicine, Ataturk University, Erzurum, 25240,Turkey

Bibliografia

  • 1. Ackerman MJ, Banvard RA (2000) Imaging outcomes from The National Library of Medicine’s Visible Human Project. Comput Med Imaging Graph, 24: 125–126.
  • 2. Alan M, Mavroidis C, Langrana N, Bidaud P (1999) Mechanism design using rapid prototyping. Tenth World Congress on the theory of machines and mechanisms. Oulu, Finland: Oulu University Press, 930–938.
  • 3. Ames AL, Nadeau DR, J.L. Moreland JL (1997) VRML 2.0 Sourcebook, Second edition, John Wiley & Sons, Inc.
  • 4. Bakhos D, Velut S, Robier A, Al Zahrani M, Lescanne E (2010) Three-dimensional modeling of the temporal bone for surgical training. Otol Neurotol, 31: 328–334.
  • 5. Barry CJ, Kanagasingam Y, Morgan W (1999) Optic disc topographic changes post-trabeculectomy visualized by anaglyphs. Aust NZJ Ophthalmol, 27: 79–83.
  • 6. Bell RB (2010) Computer planning and intraoperative navigation in cranio-maxillofacial surgery. Oral Maxillofac Surg Clin North Am, 22: 135–156.
  • 7. Beylot P, Gingins P, Kalra P, Thalmann NM, Maurel W, Thalmann D, Fasel J (1996) 3D Interactive topological modeling using visible human dataset. Com Graph Forum, 15: 33–34.
  • 8. Bro-Nielsen M (1997) Rigid registration of CT, MR and cryosection images using a GLCM framework. In: CVRMed/MRCAS’97. Springer Verlag, France, pp. 171–180.
  • 9. Chang PS, Parker TH, Patrick CW, Miller MJ (2003) The accuracy of stereolithography in planning craniofacial bone replacement. J Craniofac Surg, 14: 164–170.
  • 10. Chen HM, Lin YC (2008) Web-FEM: an internet-based finite-element analysis framework with 3D graphics and parallel computing environment. Adv Eng Softw, 39: 55–68.
  • 11. Cheung LK, Wong MCM, Wong LLS (2001) The applications of stereolithography in facial reconstructive surgery. Medical imaging and augmented reality: First International Workshop; 2001 June 10–12; MIAR, Hong Kong, China: IEEE Computer Society; pp. 10–15.
  • 12. Decraemer WF, Dirckx JJ, Funnell WRJ (2003) Three-dimensional modeling of the middle-ear ossicular chain using a commercial high-resolution X-Ray CT scanner. J Assoc Res Otolaryngol, 4: 250–263.
  • 13. Dolz MS, Cina SJ, Smith R (2000) Stereolithography: a potential new tool in forensic medicine. Am J Forensic Med Pathol, 21: 119–123.
  • 14. Doneus M, Hanke K (1999) Anaglyph images-still a good way to look at 3D objects? URL: http://cipa.icomos.org/text%20files/olinda/99c411.pdf [accessed November 2010].
  • 15. D’Urso PS, Earwaker WJ, Barker TM, Redmond MJ, Thompson RG, Effeney DJ, Tomlinson FH (2000) Custom cranioplasty using stereolithography and acrylic. Br J Plas Surg, 53: 200–204.
  • 16. Hastings-Trew J (2010) Cinema 4D Global Illumination. URL: http://planetpixelemporium.com/tutorialpages/global.html [accessed October 2010].
  • 17. Holubar SD, Hassinger JP, Dozois EJ, Camp JC, Farley DR, Fidler JL, Pawlina W, Robb RA (2009) Virtual pelvic anatomy and surgery simulator: an innovative tool for teaching pelvic surgical anatomy. Stud Health Technol Inform, 142: 122–124.
  • 18. Jacobs PF (1992) Rapid prototyping and manufacturing: fundamentals of stereolithography. McGraw-Hill, New York, pp. 5–7.
  • 19. Jacobs PF (1996) Stereolithography and other RP&M technologies. ASME Press, New York, pp. 5–10.
  • 20. Jacobs S, Grunert R, Mohr FW, Falk V (2008) 3D-imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg, 7: 6–9.
  • 21. Kapakin S, Demiryurek D (2009) The reproduction accuracy for stereolithographic model of the thyroid gland derived from the visible human dataset. Saudi Med J, 30: 887–892.
  • 22. Kernan BT, Wimsatt JA 3rd. (2000) Use of a stereolithography model for accurate, preoperative adaptation of a reconstruction plate. J Oral Maxillofac Surg, 58: 349–351.
  • 23. Lee CH, Rhee CS, Oh SJ, Jung YH, Min YG, Kim IO (2000) Development of the paranasal sinuses in children: MRI study. Korean J. Otolaryngol, 43: 507–513.
  • 24. Lieger O, Richards R, Liu M, Lloyd T (2010) Computer-assisted design and manufacture of implants in the late reconstruction of extensive orbital fractures. Arch Facial Plast Surg, 12: 186–191.
  • 25. Mahmoudi SE, Akhondi-Asl A, Rahmani R, Faghih-Roohi S, Taimouri V, Sabouri A, Soltanian-Zadeh H (2010) Webbased interactive 2D/3D medical image processing and visualization software. Comput Methods Programs Biomed, 98: 172–182.
  • 26. Mankovich NJ, Cheeseman AM, Stoker NG (1990) The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging, 3: 200–203.
  • 27. Paiva WS, Amorim R, Bezerra DA, Masini M (2007) Application of the stereolithography technique in complex spine surgery. Arq Neuropsiquiatr, 65: 443–445.
  • 28. Park IH, Song JS, Choi H, Kim TH, Hoon S, Lee SH, Lee HM (2010) Volumetric study in the development of paranasal sinuses by CT imaging in Asian: a pilot study. Int J Pediatr Otorhinolaryngol, 74: 1347–1350.
  • 29. Purnell MA (2003) Casting, replication, and anaglyph stereo imaging of microscopic detail in fossils, with examples from conodonts and other jawless vertebrates. Palaeontol Electron, 6: 1–11.
  • 30. Robb RA ed. (1990) A software system for interactive and quantitative analysis of biomedical images. In 3D imaging in medicine. Springer Verlag, Berlin, pp. 333–361.
  • 31. Robb RA (2000) Three-dimensional visualization in medicine and biology. In: Bankman IN ed. Handbook of medical imaging: processing and analysis. Academic Press, San Diego, pp. 685–712.
  • 32. Santler G, Kärcher H, Kern R (1998) Stereolithography models vs. milled 3D models. Production, indications, accuracy. Mund Kiefer Gesichtschir, 2: 91–95.
  • 33. Sodian R, Schmauss D, Schmitz C, Bigdeli A, Haeberle S, Schmoeckel M, Markert M, Lueth T, Freudenthal F, Reichart B, Kozlik-Feldmann R (2009) 3-dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann Thorac Surg, 88: 974–978.
  • 34. Solaro P, Pierangeli E, Pizzoni C, Boffi P, Scalese G (2008) From computerized tomography data processing to rapid manufacturing of custom-made prostheses for cranioplasty. Case report. J Neurosurg Sci, 52: 113–116.
  • 35. Spitzer V, Ackerman MJ, Scherzinger AL, Whitlock D (1996) The visible human male: A technical report. JAMA, 3: 118–130.
  • 36. Staffa G, Nataloni A, Compagnone C, Servadei F (2007) Custom made cranioplasty prostheses in porous hydroxyapatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochir (Wien), 149: 161–170.
  • 37. Trelease RB (2002) Anatomical informatics: millen-nial perspectives on a newer frontier. Anat Rec, 269: 224–235.
  • 38. Warrick PA, Funnell WR (1998) A VRML-based anatomical visualization tool for medical education. IEEE Trans Inf Technol Biomed, 2: 55–61.
  • 39. Winder J, Bibb R (2005) Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg, 63: 1006–1015.
  • 40. Wolf G, Anderhuber W, Kuhn F (1993) Development of the paranasal sinuses in children: implications for paranasal sinus surgery. Ann Otol Rhinol Laryngol, 102: 705–711.
  • 41. Wurm G, Tomancok B, Pogady P, Holl K, Trenkler J (2004) Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical notes. J Neurosurg, 100: 139–145.
  • 42. Wurm G, Tomancok B, Holl K, Trenkler J (2004) Prospective study on cranioplasty with individual carbon fiber reinforced polymer (CFRP) implants produced by means of stereolithography. Surg Neurol, 62: 510–521.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a8379263-6e5e-4eaa-87b5-cd503dfd59e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.