PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 2 |

Tytuł artykułu

A molecular approach to the study of avian DNA in bat faeces

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The molecular identification of prey in faeces is an efficient non-invasive technique to study diet which requires both a satisfactory method of DNA extraction and the design of specific primers to selectively amplify prey's DNA. In this study we evaluated and compared the efficiency of two total DNA extraction methods and five primer pairs for the molecular identification of birds from scats, in particular from the giant noctule bat (Nyctalus lasiopterus). A modified DNA stool Mini Kit of Qiagen was tested against a modified silica method with a guanidinium thiocianate (GuSCN) applied after freezing and pulverizing the samples. We also checked two published vertebrate- and bird-generalist primer pairs and three bird-specific primer pairs designed by us (two pairs targeting the cytochrome b and one the cytochrome oxidase subunit I genes) that amplified shorter DNA fragments. The results show that pulverizing the scat remains before extraction was a very important step, presumably facilitating access to the well preserved DNA located inside the rachis of the feathers. The combination of our bird-specific designed primers showed a higher amplification rate than the generalist primers and allowed successful bird identification from the feathers excreted by the giant noctule bat in all the scat samples analyzed, independent of the preservation method used (dried and frozen). These methodological improvements will allow not only the study of the avian diet composition of the enigmatic giant noctule, but the extension of this methodology to other bird predators such as raptors.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

2

Opis fizyczny

p.451-460,fig.,ref.

Twórcy

  • Estacion Biologica de Donana, Consejo Superior de Investigaciones Cientificas (CSIC), Sevilla, Spain
autor
  • Estacion Biologica de Donana, Consejo Superior de Investigaciones Cientificas (CSIC), Sevilla, Spain
  • Estacion Biologica de Donana, Consejo Superior de Investigaciones Cientificas (CSIC), Sevilla, Spain
autor
  • Estacion Biologica de Donana, Consejo Superior de Investigaciones Cientificas (CSIC), Sevilla, Spain

Bibliografia

  • 1. S. J. Agosta 2002. Habitat use, diet and roost selection by the big brown bat (Eptesicus fuscus) in North America: a case for conserving an abundant species. Mammal Review, 32: 179–198. Google Scholar
  • 2. N. Agustí , S. P. Shayler , J. D. Harwood , I. P. Vaughan , K. D. Sunderland , and W. O. C. Symondson . 2003. Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers. Molecular Ecology, 12: 3467–3475. Google Scholar
  • 3. A. Alberdi , I. Garin , O. Aizpurua , and J. Aihartza . 2012. The foraging ecology of the mountain long-eared bat (Piecoins macrobullaris) revealed with DNA mini-barcodes. PLoS ONE, 7: e35692. Google Scholar
  • 4. M. Alcaide , C. Rico , S. Ruiz , R. Soriguer , J. Muñoz , and J. Figuerola . 2009. Disentangling vector-borne transmission networks: a universal DNA barcoding method to identify vertebrate hosts from arthropod bloodmeals. PLoS ONE, 4: e7092. Google Scholar
  • 5. J. D. Altringham 2011. Bats: from evolution to conservation, 2nd edition. Oxford University Press, New York, 324 pp. Google Scholar
  • 6. E. S. Boston , S. J. Puechmaille , D. D. Scott , D. J. Buckley , M. G. Lundy , I. W. Montgomery , P. A. Prodhöl , and E. C. Teeling . 2012. Empirical assessment of non-invasive population genetics in hats: comparison of DNA quality from faecal and tissue samples. Acta Chiropterologica, 14: 45–52. Google Scholar
  • 7. T. J. Brinkman , M. K. Schwartz , D. K. Person , K. L. Pilgrim , and K. J. Hundertmark . 2010. Effects of time and rainfall on PCR success using DNA extracted from deer fecal pellets. Conservation Genetics, 11: 1547–1552. Google Scholar
  • 8. W. M. Brown , M. George , and A. C. Wilson . 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the USA, 76: 1967–1971. Google Scholar
  • 9. G. G. Carter , C. E. Coen , L. M. Stenzler , and I. J. Lovette . 2006. Avian host DNA isolated from the feces of whitewinged vampire bats (Diaemus youngi). Acta Chiropterologica, 8: 255–258. Google Scholar
  • 10. E. L. Clare , E. E. Fraser , H. E. Braid , M. B. Fenton , and P. D. Hebert . 2009. Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach to detect arthropod prey. Molecular Ecology, 18: 2532–2542. Google Scholar
  • 11. B. E. Deagle , N. J. Gales , K. Evans , S. N. Jarman , S. Robinson , R. Trebilco , and M. A. Hindell . 2007. Studying seabird diet through genetic analysis of faeces: a case study on Macaroni penguins (Eudyptes chysolophus). PLoS ONE, 2:e831. Google Scholar
  • 12. L. De León , B. Rodríguez , and A. Martín . 2007. Status, distribution and diet of Eleonora’s falcon (Falco eleonorae) in the Canary Islands. Journal of Raptor Research, 41: 331–336. Google Scholar
  • 13. J. del Hoyo , A. Elliot , and D. A. Christie (eds.). 2004–2011. Handbook of the birds of the World. Lynx Edicions, Barcelona, Volumes 9–16. Google Scholar
  • 14. G. Dondini , and S. Vergari . 2000. Carnivory in the greater noctule bat (Nyctalus lasiopterus) in Italy. Journal of Zoology (London), 251: 233–236. Google Scholar
  • 15. G. Dunshea 2009. DNA-hased diet analysis for any predator. PLoS ONE, 4: e5252. Google Scholar
  • 16. L. E. Farrell , J. Roman , and M. E. Sunquist . 2000. Dietary separation of sympatric carnivores identified by molecular analysis of scats. Molecular Ecology, 9: 1583–1590. Google Scholar
  • 17. M. A. J. Frantzen , J. B. Silk , J. W. H. Ferguson , R. K. Wayne , and M. H. Kohn . 1998. Empirical evaluation of preservation methods for faecal DNA. Molecular Ecology, 7: 1423–1428. Google Scholar
  • 18. D. Fukui , H. Dewa , S. Katsuta , and A. Sato . 2013. Bird predation by the birdlike noctule in Japan. Journal of Mammalogy, 94: 657–661. Google Scholar
  • 19. D. Griffiths 1975. Prey availability and the food of predators. Ecology, 56: 1209–1214. Google Scholar
  • 20. T. Haag , A. S. Santos , C. De Angelo , A. C. Srbek-Araujo , D. A. Sana , R. G. Morato , F. M. Salzano , and E. Eizirik . 2009. Development and testing of an optimized method for DNA-based identification of jaguar (Panthera onca) and puma (Puma concolor) fecal samples for use in ecological and genetics studies. Genetica, 136: 505–512. Google Scholar
  • 21. C. Ibáñez , J. Juste , J. L. García-Mudarra , and P. T. AgirreMendi . 2001. Bat predation on nocturnally migrating birds. Proceedings of the National Academy of Sciences of the USA, 98: 9700–9702. Google Scholar
  • 22. K. C. R. Kerr , D. A. Lijtmaer , A. S. Barreira , P. D. Hebert , and P. L. Tubaro . 2009. Probing evolutionary patterns in Neotropical birds through DNA barcodes. PLoS ONE, 4: e4379. Google Scholar
  • 23. R. King , D. Read , M. Traugott , and W. Symondson . 2008. Molecular analysis of predation: a review of best practice for DNA-based approaches. Molecular Ecology, 17: 947–963. Google Scholar
  • 24. T. Koressaar , and M. Remm . 2007. Enhancements and modifications of primer design program Primer3. Bioinformatics Applications Note, 23: 1289–1291. Google Scholar
  • 25. S. L. Lima 1998. Nonlethal effects in the ecology of predatorprey interactions. What are the ecological effects of antipredator decision-making? BioScience, 48: 25–34. Google Scholar
  • 26. J. M. Montoya , and R. V. Solé . 2002. Small world patterns in food webs. Journal of Theoretical Biology, 214: 405–412. Google Scholar
  • 27. M. A. Murphy , K. C. Kendall , A. Robinson , and L. P. Waits . 2007. The impact of time and field conditions of brown bear (Ursus arctos) fecal DNA amplification. Conservation Genetics, 8: 1219–1224. Google Scholar
  • 28. C. Napolitano , M. Bennett , W. E. Johnson , S. J. O'Brien , P. A. Marquet , I. Barría , E. Poulin , and A. Iriarte . 2008. Ecological and biogeographical inferences on two sympatric and enigmatic Andean cat species using genetic identification of faecal samples. Molecular Ecology, 17: 678–690. Google Scholar
  • 29. K. M. Parsons , S. B. Piertney , S. J. Middlemas , P. S. Hammond , and J. D. Armstrong . 2005. DNA-based identification of salmonid prey species in seal faeces. Journal of Zoology (London), 266: 275–281. Google Scholar
  • 30. M. R Piggott , and A. C. Taylor . 2003. Extensive evaluation of fecal preservation and DNA extraction methods in Australian native and introduced species. Australian Journal of Zoology, 51: 341–355. Google Scholar
  • 31. F. Pompanon , B. E. Deagle , W. O. C. Symondson , D. S. Brown , S. N. Jarman , and P. Taberlet . 2012. Who is eating what: diet assessment using next generation sequencing. Molecular Ecology, 21: 1931–1950. Google Scholar
  • 32. A. G. Popa-Lisseanu , A. Delgado-Huertas , M. G. Forero , A. Rodríguez , R. Arlettaz , and C. Ibáñez . 2007. Bats’ conquest of a formidable foraging niche: the myriads of nocturnally migrating songbirds. PLoS ONE, 2: e205. Google Scholar
  • 33. L. R. Prugh , C. E. Ritland , S. M. Arthur , and C. J. Krebs . 2005. Monitoring coyote population dynamics by genotyping faeces. Molecular Ecology, 14: 1585–1596. Google Scholar
  • 34. S. Ratnasingham , and P. D. N Hebert . 2007. BOLD: The Barcode of Life Data System ( www.barcodinglife.org). Molecular Ecology Notes, 7: 355–364. Google Scholar
  • 35. N. Rohland , and M. Hofreiter . 2007. Comparison and optimization of ancient DNA extraction. BioTechniques, 42: 343–352. Google Scholar
  • 36. A. Ruiz-González , J. Rubines , O. Berdión , and B. J. GómezMoliner . 2008. A non-invasive genetic method to identify the sympatric mustelids pine marten (Martes martes) and stone marten (Martes foina): preliminary distribution survey on the northern Iberian Peninsula. European Journal of Wildlife Research, 54: 253–261. Google Scholar
  • 37. W. Rychlik 1995. Selection of primers for Polymerase Chain Reaction. Molecular Biotechnology, 3: 129–134. Google Scholar
  • 38. S. K. Sheppard , and J. D. Harwood . 2005. Advances in molecular ecology: tracking trophic links through predator-prey food webs. Functional Ecology, 19: 751–762. Google Scholar
  • 39. D. L. Swofford 2001. PAUP* Phylogenetic analysis using parsimony (and other methods) Version 4.0bl0. Sinauer Associates, Sunderland, MA, USA. Google Scholar
  • 40. W. O. C. Symondson 2002. Molecular identification of prey in predator diets. Molecular Ecology, 11: 627–641. Google Scholar
  • 41. A. Thabah , G. Li , Y. Wang , B. Liang , K. Hu , S. Zhang , and G. Jones . 2007. Diet, écholocation, calls and phylogenetic affinities of the great evening bat (Ia io; Vespertilionidae): another carnivorous bat. Journal of Mammalogy, 88: 728–735. Google Scholar
  • 42. S. S. Tobe , A. C. Kitchener , and A. M. T. Linacre . 2010. Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes. PLoS ONE, 5: el4156. Google Scholar
  • 43. W. N. Venables , and B. D. Ripley . 2002. Modern applied statistics with S, 4th edition. Springer-Verlag, New York, xii + 498 pp. Google Scholar
  • 44. J. O. Whitaker Jr. , G. F. McCraken , and B. M Siemers . 2009. Food habits analysis of insectivorous bats. Pp. 567–592, in Ecological and behavioral methods for the study of bats, 2nd edition ( T. H. Kunz and S. Parsons , eds.). Johns Hopkins University Press, Baltimore, 901 pp. Google Scholar
  • 45. M. R. K. Zeale , R. K Butlin , G. L. Barker , and D. C. Lees . 2011. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular Ecology Resources, 11: 236–244. Google Scholar

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a72248d8-abd3-49a9-87df-2efd721f3321
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.