Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 61 | 4 |
Tytuł artykułu

Effect of tropospheric ozone on photosynthetic activity of ozone-resistant and ozone-sensitive test plants (Nicotiana tabacum L., Phaseolus vulgaris L.)

Warianty tytułu
Języki publikacji
Ozone-sensitive and -resistant tobacco plants and an ozone-sensitive bean were employed in this experiment. Plants were exposed at two different sites varying in ozone level, within Poznań city and in a remote forestry area. Net photosynthetic rate (PN), stomatal conductance (gs ) and intercellular CO₂ concentration (Ci ) were measured every 7th day until the 28th day of the experiment. The ozone concentrations were higher at the forest site (called here the high ozone site) than in the city (low ozone site). Mean hour ozone concentrations at forest site varied between 34.2–45.5 ppb and 30.2–39.2 ppb, while cumulative ozone concentrations (AOT 40) were 2032 ppb h⁻¹ and 611, respectively. The aim of the study was to compare the results of exposed ozone-sensitive and resistant test plants according to the potential effect of tropospheric ozone on natural vegetation. The experiment revealed the variability between exposure sites and plant species, as well as changes of photosynthetic parameters during the whole experimental season. Common bean assimilation parameters revealed the best correlation with the tropospheric ozone level. Tobacco test plants – ozone-sensitive and -resistant – varied in response to stress factors. There were no statistical differences between exposure sites and plant response. However, both ozone-sensitive and -resistant tobacco plants revealed lower levels of PN at the low ozone site, while ozone-sensitive bean revealed the opposite relation. Moreover, plants revealed gas exchange relations which were not previously observed in fumigation experiments (such as small differences in Ci levels of tobacco plant in the first three weeks). This might be a result of relatively low levels of tropospheric ozone during the experimental period. Hence, it is suggested to continue ambient air investigations to confirm or reject the results of this experiment.
Opis fizyczny
  • Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piatkowska 94C, 60–649 Poznan, Poland
  • Ashmore M.R. 2005 – Assessing the future global impacts of ozone on vegetation – Plant Cell Environ. 28: 949–964.
  • Bagard M., Le Thiec D., Delacote E., Hasefrantz-Sauder M.-P., Banvoy J., Gérard J., Dizengremel P., Jolivet Y. 2008 – Ozone-induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of the leaves – Physiol. Plant. 134: 559–574.
  • Barret L.A., Bunce N.J., Gillespie T.J. 1998 – Estimation of tropospheric ozone production using concentrations of hydrocarbons and NOx, and a comprehensive hydrocarbons reactivity parameter – J. Photoch. Photobio. A 113: 1–8.
  • Betzelberger A.M., Yendrek C.R., Sun J., Leisner C.P., Nelson R.L., Ort D.R., Ainsworth E.A. 2012 – Ozone exposure response for U.S. soybean cultivars: linear reductions in photosynthetic potential, biomass, and yield – Plant Physiol. 160: 1827–1839.
  • Borowiak K. 2005 – The evaluation of visible leaf injury of tobacco plants caused by tropospheric ozone in the Poznań City and surrounding areas in 2002-2004 – Prace Kom. Nauk Roln. i Kom. Nauk Leśn., PTPN, Poznań 98/99: 57–66 (in Polish).
  • Borowiak K., Kayzer D., Budka A., Zbierska J., Drzewiecka K., Bandurska H., Goliński P. 2012 – Cumulative tropospheric ozone effect on visible tobacco leaf injury – Fresen. Environ. Bull. 21(2a): 509–517.
  • Borowiak K., Rucińska-Sobkowiak R., Rymer K., Gwóźdź E., Zbierska J. 2009 – Biochemical markers of tropospheric ozone: experimentation with test-plants – Pol. J. Ecol. 57: 3–14.
  • Byres D.P., Johnson J.D., Dean T.J. 1992 – Seasonal response of slash pine (Pinus elliottii var. elliottii Engelm.) photosynthesis to longterm exposure to ozone and acidic precipitation – New Phytol. 122: 91–96.
  • Castagna A., Nali C., Ciompi S., Lorenzini G., Soldatini G.F., Ranieri A. 2001 – Ozone exposure affects photosynthesis of pumpkin (Cucurbita pepo) plants – New Phytol. 152: 223–229.
  • Degl’Innocenti E., Guidi L., Soldatini G. 2002 – Characterization of the photosynthetic response of tobacco leaves to ozone: CO2 assimilation and chlorophyll fluorescence – J. Plant Physiol. 159: 845–853.
  • Emberson L.D., Büker P., Ashmore M.R., Mills G., Jackson L.S., Agrawal M., Atikuzzaman M.D., Cinderby S., Engardt M., Jamir C., Kobayashi K., Oanh N.T.K., Quadir Q.F., Wahid A. 2009 – A comparison of North America and Asian exposure-response data for ozone effects on crop yield – Atmos. Environ. 43: 1945–1953.
  • Farage P.K., Long S.P., Lechner E.G., Baker N.G. 1991 – The sequence of change within the photosynthetic apparatus of wheat following short-term exposure to ozone – Plant Physiol. 95: 529–535.
  • Feng Z., Kobayashi K. 2009 – Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta analysis – Atmos. Environ. 43: 1510–1519.
  • Feng Z., Pang J., Kobayashi K., Zhu J., Ort D.R. 2011 – Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions – Glob. Change Biol. 17: 580–591.
  • Fiscus E.L., Booker F.L., Burkey K.O. 2005 – Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning – Plant Cell Environ. 28: 997–1011.
  • Flagler R.B., Lock J.E., Elsik C.G. 1994 – Leaf level and whole plant gas exchange characteristics of shortleaf pine exposed to ozone and simulated acid rain – Tree Physiol. 14: 361–374.
  • Francini A., Nali C., Picchi V., Lorenzini G. 2007 – Metabolic changes in white clover clones exposed to ozone – Environ. Exp. Bot. 60: 11–19.
  • Fuhrer J., Perler R., Shariat-Madari H. 1993 – Growth and gas exchange characteristics of two clones of white clover Trifolium repens L. differing in ozone sensitivity – Angew Bot. 67: 163–167.
  • Guidi l., Nali C., Lorenzini G., Filippi F., Soldatini G.F. 2001 – Effect of chronic ozone fumigation on the photosynthetic processes of poplar clones showing different sensitivity – Environ. Poll. 113: 245–254.
  • Guzy M.R., Heath R. 1993 – Responses to ozone of varieties of common bean (Phaseolus vulgaris L.) – New Phytol. 124: 617–625.
  • Heagle A.S., Miller J.E., Sherill D.E., Rawlings J.D. 1993 – Effects of ozone and carbon dioxide mixtures on two clones of white clover – New Phytol. 90: 1029–1034.
  • Heath R.L., Lefohn A.S., Musselman R.C. 2008 – Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose – Atmos. Environ. 43: 619–623.
  • Kellerová D., Janík R. 2006 – Air temperature and ground level ozone concentration in submountain beech forest (Western Carpathians, Slovakia) – Pol. J. Ecol. 54: 505–509.
  • Klumpp A., Ansel W., Klumpp G., Calatayud V., Garrec J.P., He S., Peñuelas J., Ribas À., Ro–Poulsen H., Rasmussen S., Sanz M.J., Vergne P. 2006 – Ozone pollution and ozone biomonitoring in European cities. Part I: Ozone concentrations and cumulative exposure indices at urban and suburban sites – Atmos. Environ. 40: 7963–7974.
  • Langebartels C., Kerner K., Leopardi S., Schraudner, M., Trost, M., Heller, W., Sandermann, H. Jr. 1991 – Biochemical plant response to ozone I. Differential induction of polyamine and ethylene biosynthesis in tobacco – Plant Physiol. 95: 882–889.
  • Leipner J., Oxborough K., Baker N.R. 2001 – Primary site of ozone-induced perturbations of photosynthesis leaves: identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging – J. Exp. Botany, 52: 1689–1696.
  • Lombardozzi D., Sparks J.P., Bonan G., Levis S. 2012 – Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model – Oecologia, 169: 651–659.
  • Long S.P., Naidu S.L. 2004 – Effects of oxidants at the biochemical, cell and physiological levels, with particular reference to ozone (In: Air Pollution and Plants, Eds: J.N.B. Bell, M. Treshow) – J. Wiley, London, UK, pp. 69–88.
  • McKee, I.M., Bullimore, J.F., Long, S.P. 1997 – Will elevated CO2 concentrations protect the yield of wheat from ozone damage? – Plant Cell Environ. 20: 77–84.
  • Meehl G.A., Stocker T.F., Collins W.D., Friedlingstein P., Gaye A.T., Gregory J.M., Kitoh A., Knutti R., Murphy J.M., Noda A., Raper S.C.B., Watterson I.G., Weaver A.J., Zhao Z.C. 2007 – Global climate projection (In: Climate change 2007: The physical basis. Contribution of working group I to fourth assessment report of IPCC on climate change, Eds: S. Solomon et al.) – Cambridge University Press. Cambridge, UK, pp. 747–845.
  • Ministry of Environment Regulation – 2008, Dz.U. 5, poz. 31. About performing the evaluation of the substances level in the air.
  • Morrison, J.I.L. 1998 – Stomatal response to increased CO2 concentration – J. Exp. Bot. 49: 443–452.
  • Myhre A., Forberg E., Aarnes H., Nilson S. 1988 – Reduction of net photosynthesis in oats after exposure of bean shoots to ozone – Photosynthetica, 24: 446–458.
  • Paoletti E., Grulke N.E. 2010 – Ozone exposure and stomatal sluggishness in different plant physiognomic classes – Environmental Pollution, 158: 2664–2671.
  • Reiling K., Davison A. 1995 – Effects of ozone on stomatal conductance and photosynthesis in populations of Plantago major L. – New Phytol. 129: 587–594.
  • Ryang S.Z., Woo S.Y., Kwon S.Y., Kim S.H., Lee S.H., Kim K.N., Lee D.K. 2009 – Changes of net photosynthesis. antioxidant enzymes activities, and antioxidant contents of Lyriodendron tulipifera under elevated ozone – Photosynthetica, 47: 19–25.
  • Silva D.T., Meirelles S.T., Moraes R.M. 2012 – Relationship between ozone, meteorological conditions, gas exchange and leaf injury in Nicotiana tabacum Bel W3 in a sub-tropical region – Atmos. Environ. 60: 211–216.
  • Singh E., Tiwari S., Agrawal M. 2009 – Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of the one component of predicted global climate change – Plant. Biol. 11: 101–108.
  • Vahisalu T., PuzõrjovaI., Brosché M., Valk E., Lepiku M., Moldau H., Petcher P., Wang Y.-S., Lindgren O., Salojärvi J. 2010 – Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1 – Plant J. 62: 442–453.
  • Van Buuren M.L., Guidi L., Fornale S., Ghetti F., Franceschetti M., Soldatini G.F., Bagni N. 2002 – Ozone-response mechanisms in tobacco: implications of polyamine to metabolism – New Phytol. 156: 389–398.
  • Wang X., Mauzerall D.L. 2004 – Characterizing distribution of surface ozone and its impact on grain production in China, Japan and South Korea: 1990-2020 – Atmos. Environ. 38: 4383–4402.
  • Zeng G., Pyle J.A., Young P.J. 2007 – Impact of climate change on tropospheric ozone and its global budgets – Atmos. Chem. Phys. 7: 11141–11189.
  • Zhang W.W., Niu J.J., Wang X.K., Tian Y., Yao E.F., Feng Z.Z. 2010 – Effects of ozone exposure on growth and photosynthesis of seedlings of Liriodendron chinense (Hemsl.) Sarg, a native tree species of subtropical China – Photosynthetica, 49: 29–36.
  • Zouzoulas D., Koutroubas S.D., Vassiliou G., Vardavakis E. 2009 – Effects of ozone fumigation on cotton (Gossypium hirsutum L.) morphology, anatomy, physiology, yield and qualitative characteristics of fibers – Environ. Exp. Bot. 67: 293–303.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.