PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 18 | 2[193] |

Tytuł artykułu

Methane in the environment (a review)

Treść / Zawartość

Warianty tytułu

PL
Metan w środowisku (artykuł przeglądowy)

Języki publikacji

EN

Abstrakty

EN
The atmospheric concentration of methane, a potential greenhouse gas, is determined by global balance between sources and sinks. The aim of the paper was to review the recent studies on the natural and anthropogenic sources that are responsible for the increase in the concentration of methane in the atmosphere, focusing on processes of methane formation and oxidation and factors influencing them. Methanotrophic and methanogenic metabolisms are an important part of these researches from the viewpoint of environmental protection. Great variability of soil properties and their interactions affecting the production, consumption and transport of CH4 makes our understanding of these processes still insufficient. Although most research to date has focused on sources of methane emissions, CH4 absorption by oxygenated soil is an important process that significantly reduces emission. The paper describes many soil-related factors affecting methanotrophic activity: particle size distribution, humidity, temperature, pH, oxygen concentration, use of nitrogen fertilisers. Land use has a significant effect on CH4 oxidation in soils, the greatest methnotrophic potential being that of forest soils as compared to meadows, pastures and arable land.
PL
Bilans źródeł i pochłaniaczy metanu determinuje stężenie metanu w atmosferze, gazu o dużym potencjale cieplarnianym. Celem pracy było przedstawienie najnowszych badań dotyczących naturalnych i antropogenicznych źródeł, odpowiedzialnych za wzrost stężenia metanu w atmosferze, oraz przegląd głównych czynników regulujących procesy powstawania i utleniania metanu w środowisku. Metanogeniczny i metanotroficzny metabolizm jest ważnym elementem badań z punktu widzenia ochrony środowiska. Duża zmienność właściwości gleby i jej interakcje wpływają na produkcję, konsumpcję i transport CH4, co sprawia, że nasze zrozumienie tych procesów jest wciąż niewystarczające. Chociaż większość dotychczasowych badań koncentrowała się na źródłach emisji metanu, absorpcja CH4 przez natlenione gleby jest ważnym procesem, znacznie zmniejszającym uwalnianie CH4 do atmosfery. Praca opisuje wiele czynników glebowych wpływających na metanotroficzne przemiany: skład granulometryczny, wilgotność, temperaturę, pH, stężenie tlenu, stosowanie nawozów azotowych. Znaczący wpływ na utlenianie CH4 w glebach ma użytkowanie gruntów, największy potencjał metanotroficzny posiadają gleby leśne w stosunku do łąk, pastwisk i gruntów ornych.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

18

Numer

Opis fizyczny

p.355-373,fig.,ref.

Twórcy

  • Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin, Poland
  • Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin, Poland
autor
  • Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin, Poland
autor
  • Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin, Poland

Bibliografia

  • Adamsen A.P.S., King G.M., 1993. Methane consumption in temperate and subarctic forest soils: rates, vertical zonation, and response to water and nitrogen. Applied and Environmental Microbiology, 59, 485-490.
  • Allaire S.E., Lafond J.A., Cabral A.R., Lange S.F., 2008. Measurement of gas diffusion through soils: comparison of laboratory methods. Journal of Environmental Monitoring 10, 1326-1336.
  • Amaral J.A. Knowles R. 1995. Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol. Lett. 126, 215-220.
  • Aulakh M.S., Wassmann R., Rennenberg H., 2001. Methane emissions from rice fields-quantification, mechanisms, role of management, and mitigation options. Adv. Agron. 70, 193-260.
  • Baran S., Turski R., 1999. Selected aspects of recycling and waste disposal (in Polish). Wydawnictwo Akademii Rolniczej w Lublinie.
  • Bender M, Conrad R., 1995. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biology and Biochemistry, 27, 12, 15-17-1527.
  • Benstead J., King G.M., 1997. Response of methane activity in forest soil to methane availability. FEMS Microbiology Ecology, 23, 333-340.
  • Bielański A., 2002. Fundamentals of inorganic chemistry (in Polish). PWN, Warszawa.
  • Bodelier P.L., Roslev P., Henckel T., Frenzel P., 2000. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature, 403, 421-424.
  • Boeckx P., Van Cleemput O., 1997. Methane emission from a fresh water wetland in Belgium. Soil Sci. Soc. Am. J., 61, 1250-1256.
  • Boeckx P., Van Cleemput O., Villaralvo I., 1997. Methane oxidation in soils with different textures and land use. Nutrient Cycling in Agroecosystems, 49, 91-95
  • Bogner J.E., Spokas E.A., Burton A., 1997. Kinetics of methane oxidation in a landfill cover soils: temporal variations, a whole landfill oxidation experiment, and modeling of net CH4 emissions. Environmental science and Technology 31, 9, 2504-2514.
  • Bradford M.A., Ineson P., Wookey P.A., Lappin-Scott H.M., 2001. The effects of acid nitrogen and acid sulphur deposition on CH4 oxidation in a forest soil: a laboratory study. Soil Biology & Biochemistry, 33, 1695-1702.
  • Bronson K.F., Mosier A.R., 1994. Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. Biology and Fertility of Soils, 17, 263-268.
  • Brzezińska M., Włodarczyk T., Gliński J., 2004. Effect of methane on soil dehydrogenase activity. Int. Agrophysics, 18, 3, 213-216.
  • Castro M.S., Steudler P.A., Melillo J.M., Aber J.D., Bowden R.D., 1993. Factors controling atmospheric methane consumption by temperate forest soils. Global Biogeochem Cycles, 9, 1-10.
  • Chanton J.P., Pawelson D.K., Green R.B., 2009. Methane oxidation in landfill cover soils is a 10% default value reasonable? Journal of Environmental Quality, 38, 654-663.
  • Clark H., Kelliher F., Pinares-Patiño C., 2011. Reducing CH4 emissions from grazing ruminants in New Zealand: challenges and opportunities. Asian-Aust. J. Anim. Sci., 24, 2, 295-302.
  • Conrad R., 1999. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology, 28, 193-202.
  • Conrad R., Klose M., Claus P., Enrich-Prast A., 2010. Methanogenic pathway, 13C isotope fractionation, and archaeal community composition in the sediment of two clear-water lakes of Amazonia. Limnol. Oceanogr., 689-702.
  • Dlugokencky E.J., Masarie K.A., Lang P.M., Tans P.P., 1998. Continuing decline in the growth rate of the atmospheric CH4 burden. Nature, 393, 447-450.
  • Dörr H., Katruff L., Levin I., 1993. Soil texture parameterization of the methane uptake in aerated soils. Chemosphere, 26, 697-713.
  • Dubey S.K., 2005. Microbial ecology of methane emission in rice agroecosystem. Ecology and Environmental Research, 3(2), 1-27,
  • Ettwig K.F., van Alen T., van de Pas-Schoonen K.T., Jetten M.S.M., Strous M., 2009. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 Phylum. Applied and Environmental Microbiology, 3656-3662.
  • Fowler D., Pilegaard K, Sutton M.A, Ambus P., Raivonen M., Duyzer J., Simpson D., Fagerli H., Fuzzi S., Schjoerring J.K, Granier C., Neftel A,. Isaksen I.S.A, Laj P., Maione M., Monks P.S., Burkhardt J., Daemmgen U., Neirynck J., Personne E., Wichink-Kruit R., Butterbach-Bahl K., Flechard C., Tuovinen J.P., Coyle M., Gerosa G., Loubet B., Altimir N., Gruenhage L., Ammannl C., Cieslik S., Paoletti E., Mikkelsen T.N., Ro-Poulsen H., Cellier P., Cape J.N., Horva´ th L., Loreto F., Niinemets U¨., Palmer P.I., Rinne J., Misztal P., Nemitz E., Nilsson D., Pryor S., Gallagher M.W., Vesala T., Skiba U., Bru¨ggemann N., Zechmeister-Boltenstern S., Williams J., O’Dowd C., Facchini M.C., de Leeuw G., Flossman A., Chaumerliac N., Erisman J.W., 2009 . Atmospheric composition change: Ecosystems-Atmosphere interactions. Atmospheric Environment, 43 5193-5267.
  • Freeman C., Nevision G. B., Kang H., Hughes S., Reynolds B., Hudson J. A., 2002. Contrasted effects of simulated drought on the production and oxidation of methane in a Mid-Wales Wetland. Soil Biology & Biochemistry, 34, 61-67.
  • Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A., Seitzinger S.P., Sutton M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
  • Garcia J.L., Patel B. K.C., Ollivier B., 2000 .Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe, 6, 205-226.
  • Gebhardt S., Fleige H., Horn R., 2009. Effect of compaction on pore functions of soils in a Saalean moraine landscape in North Germany. Journal of Plant Nutrition and Soil Science, 172, 688-695.
  • Hatano R., Lipiec J., 2004. Effect of land use and cultural practices on greenhouse gas fluxes in soil. Acta Agrophysica, Rozprawy i Monografie, 6.
  • Heipieper H.J., Debont J.A.M., 1997. Methane oxidation by Dutch grassland and peat soil micro flora. Chemosphere, 35, 12, 3025-3037.
  • Higgins J.I., Best D.J., Hammond R.C., 1981. Methaneoxidizing microorganisms. Microbiol. Rev., 45,4, 556-590.
  • Hinrichs K.U., Boetius A., 2002. The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Ocean Margin Systems, (Ed. G. Wefer, D Billett, D. Hebbeln, B.B. Jřrgensen, M. Schl) TCE vanWeering, Springer-Verlag 457-77.
  • Hosono T., Nouchi I., 1997. The dependence of methane transport in rice plants on the root zone temperature. Plant Soil, 191, 233-240.
  • Hütsch B. W., Russelll P., Mengel K., 1996. CH4 oxidation in two temperate arable soils as affected by nitrate and ammonium application. Biology and Fertility of Soils, 23, 86-92.
  • Hütsch, B.W., 1996. Methane oxidation in soils of two long-term fertilization inorganic N. Soil Biology & Biochemistry, 36, 2059-2065.
  • Intergovernmental Panel on Climate Change (IPCC), 1995. The supplementary report to the IPCC Scientific Assessment. (Ed J.T. Houghton, B.A. Callander & S.K. Varney) Cambridge University Press, Cam-bridge.
  • Intergovernmental Panel on Climate Change (IPCC), 2006. Climate Change 2006: The Physical Science Basis. Summary for Policymakers. IPCC Secretariat, Geneva.
  • Intergovernmental Panel on Climate Change (IPCC), 2007. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge UK.
  • Keller M., Veldkamp E., Weltz A.M., Reiners W.A., 1993. Effect of pasture age on soil trace-gas emissions from a deforested area of Costa Rica. Nature, 365, 244-246.
  • King G.M., Adamsen A.P.S., 1992. Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph Methylomonas rubra. Appl. Environ. Microbiol., 58, 2758-2763.
  • Kludze H.K., DeLaune R.D., Patrick Jr W.H., 1993. Aerenchyma formation and methane and oxygen ex-change in rice. Soil Sci Soc Am J., 57, 386-391.
  • Knittel K., Boetius A., 2009. Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annu. Rev. Microbiol.,63, 311-34.
  • Kreileman G.J.J., Bouwann A.F., 1994. Computing land use emissions of greenhouse gases. Water Air and Soil Pollution, 76, 231-258.
  • Lansdown J.M., Quay P.D., King S.L., 1992. CH4 production via CO2 reduction in a temperate bog: a source of 13C-depleted CH4. Geochim. Cosmochim. Acta, 56, 3493-3503.
  • Mancinelli R.L., 1995. The regulation of methane oxidation in soil. Annual Reviews of Microbiology, 49, 581-605.
  • Megonigal J.P., Hines M.E., Visscher P.T., 2004. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. In: Biogeochemistry (Ed. W.H. Schlesinger). Elsevier-Pergamon, Oxford, UK., 317-424.
  • Min H., Chen Z.Y., Wu W.X., Chen M.C., 2002. Microbial aerobic oxidation of methane in pady soil. Nutrient Cycling in Agroecosystems 64, 79-85.
  • Minami K., Takata K., 1997. Atmospheric methane: sources, sink, and strategies for reducing agricultural emissions. Wat. Sci. Tech., 36, 6-7, 509-516.
  • Mohanty S.R., Bodelier P.L.E., Floris V., Conrad R., 2006. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Applied and Environmental Microbiology, 72, 1346-1354.
  • Mosier A., Schimel D., Valentine D., Bronson K., Parton W., 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature, 350, 330-332.
  • Mosier A.R., Delgado J.A., Cochran V.L., Valentine D.W., Parton W.J., 1997. Impact of agriculture on soil consumption of atmospheric CH4 and a comparison of CH4 and N2O flux in subarctic, temperate and tropical grasslands. Nutrient Cycling in Agroecosystems, 49, 71-83.
  • Murrell J.C., Radajewski S., 2000. Cultivation-independent techniques for studying methanotroph ecology. Research in Microbiology,151(10), 807-14.
  • Neue H.U., Wassmann R., Kludze H.K., Bujun W., Lantin R.S., 1997. Factors and processes controlling methane emissions from rice fields. Nutr. Cycl. Agroecosyst., 49, 111-117.
  • Nozhevnikova A. N., Lebedev V. S., 1995. Burial sites of municipal garbage as a source of stmosferic methane. Advances in Soil Sciences, 26, 48-58.
  • Ojima D.S., Valentine D.W., Mosier A.R., Parton J., Schimel D.S., 1993. Effect of land use change on methane oxidation in temperature forest and grasland soils. Chemosphere, 26, 675-685.
  • Park J.R., Moon S. Ahn Y.M., Kim J.Y., Nam K., 2005. Determination of environmental factors influencing methane oxidation In a sandy landfill cover soil. Environmental Technology, 26, 93-102.
  • Paustian K., Robertson G.P., Elliott E.T., 1995. Management impacts on carbon storage and gas fluxes (CO2, CH4) in mid latitude cropland, Soil Management and greenhouse effects, 69-84.
  • Pawłowska M., 1999. Possibility of methane emission reduction from landfills through its biochemical oxidation in soil cover (in Polish). Technical University of Lublin.
  • Pawłowska M., Stepniewski W., Czerwiński J. 2003, The effect of texture on methane oxidation capacity of sand layer – a model laboratory study. Environmental Engineering Studies. Polish Research on the Way to EU. Kluwer, 339-355.
  • Peer R. L., Thorneloe S. A., Epperson D. L., 1993. A Comparison of methods for estimating global methane emissions from landfills. Chemosphere, 26, 1-4, 387-399.
  • Powlson, D.S., Goulding, K.W.T., Willison, T.W.,Webster, C.P., Hütsch, B.W., 1997. The effect of agriculture on methane oxidation in soil. Nutrient Cycling in Agroecosystems, 49, 59-70.
  • Raghoebarsing A.A., Pol A., van de Pas-Schoonen K.T., Smolders A.J., Ettwig K.F., Rijpstra W.I., Schouten S., Damsté J.S., Op den Camp H.J., Jetten M.S., Strous M., 2006. A microbial consortium couples an-aerobic methane oxidation to denitrification. Nature, 440, 878-879.
  • Reay D.S., 2001. Methane production and theoretical consumption in UK livestock production: is a realistic balance possible? Chemosphere - Global Chance Science, 3, 419-421.
  • Reay, D.S., Nedwell, D.B., 2004. Methane oxidation in temperate soils: effects of inorganic N. Soil Biology & Biochemistry 36, 2059-2065.
  • Reeburgh W.S., 2007. Oceanic methane biogeochemistry. Chem. Rev., 107, 486-513.
  • Reinoud S., 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry, 41, 23-51.
  • Roslev P., Iversen N., Henriksen K., 1997. Oxidation and assimilation of atmospheric methane by soil methane oxidizers. Applied and Environmental Microbiology, 63, 3, 874-880.
  • Röwer I.U., Geck Ch., Gebert J., Pfeiffer E.M., 2011. Spatial variability of soil gas concentration and methane oxidation capacity in landfill covers. Waste Management, 31, 926-934.
  • Sass R.L., Fisher F. M.,Wang Y.B., Turner F.T., Jund M. F., 1992. Methane emission from rice fields: the effect of floodwater management. Global Biogeochemical Cycles, 6, 249-262.
  • Schimel J.P., 1995. Plant transport and methane production as controls on methane flux from arctic wet meadow tundra. Biogeochemistry, 28, 183-200.
  • Schlesinger W. H. 1997. Biogeochemistry: an Analysis of Global Change. Academic Press, San Diego, 237-247.
  • Schnell S., King G.M., 1996. Responses of methanotrophic activity in soils and cultures to water stress. Applied and Environmental Microbiology, 62, 3203-3209.
  • Sigmund J., Olsen R.A., 1998. Atmospheric methane consumption in adjacent arable and forest soil systems. Soil Biol. Biochem, 30, 8/9, 1187-1193.
  • Stein V.B., Hettiarachi J.P.A., 2001. Methane oxidation in three Alberta soils: Influence of soil parameters and methane flux rates. Environmental technology, 22, 101-111.
  • Stern J.C., Chanton J., Abichou T., Powelson D., Yuan L., Sharon E., Bogner J., 2007. Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Waste Management, 27, 1248-1258.
  • Stępniewska Z., Przywara G., Bennicelli R.P., 2004. Plant response in anaerobic conditions (in Polish). Acta Agrophysica, 113,7, 15-21.
  • Stępniewski W., Wysocka A., Rożej A., Węgorek T., Wiśniewska M., Kotowicz U., Nosalewicz M., Rut B. 2003. Oxidation of methane in conditions of biological reclamation of municipal waste landfills with carbon rock soil (in Polish). Monografie Komitetu Inżynierii Środowiska PAN, 19.
  • Stiehl-Braun P.A., Powlson D.S., Poulton P.R., Niklaus P.A., 2011. Effects of N fertilizers and liming on the microscale distribution of soil methane assimilation in the long-term Park Grass experiment at Rothamsted. Soil Biology & Biochemistry, 43, 1034-1041.
  • Wang Z., Zeng D., Patric W.H.Jr., 1996. Methane emission from natural wetlands. Environ. Monit. Asses., 42, 142-161.
  • Wang, Z., Ineson, P., 2003. Methane oxidation in a temperate coniferous forest soil: effects of inorganic N. Soil Biol. Biochem., 35, 427-433.
  • Watson S., Downing J., 1992. Sigmoid relationships between phosphorus, algal biomass and algal community structures. Can. J. Fish. Aquat. Sci., 49, 2605-2610.
  • Whalen S.C., Reeburgh W.S., 1996. Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biology Biochem., 28, 1271-1281.
  • Whalen S.C., Reeburgh W.S., Sandbeck K.a., 1990. Rapid methane oxidation in a landfill cover soil, Applied and Environmental Microbiology, 56, 11, 3405-3411.
  • Willison T.W., Cook R., Müller A., Powlson D.S., 1996. CH4 oxidation in soils fertilized with organic and inorganic-N; differential effects. Soil Biology & Biochemistry, 28, 135-136.
  • Włodarczyk T., 2011. Greenhouse gasses sink in soils. In: Encyclopedia of Agrophysics (Eds J. Gliński, J. Horabik, J. Lipiec), Springer Science+Business Media B.V, 351-354.
  • Xu S., Jaffe P R, Mauzerall D. L., 2007. A process-based model for methane emission from flooded rice paddy systems. Ecological Modelling, 205, 475-491.
  • Xu X., Inubushi K., 2004. Effects of N sources and methane concentrations on methane uptake potential of a typical coniferous forest and its adjacent. Biology and Fertility of Soils, 40, 215-221.
  • Yamada M., Endo K., Ishigaki T., 2011. Methane oxidation in landfill covers soil: case study in Tajlend. International Conference on Environmental Science and Technology IPCBEE, 6, 269-273.
  • Yavit J.B., Williams C.J., Wieder R.K. 1997. Production of methane and carbon dioxide in peatland ecosystems across north America: effects of temperature, aeration, and organic chemistry of peat. Geomicrobiol. J., 14, 299-316.
  • Zaliwski A. S., 2005 Estimation of nitrous oxide and methane from agriculture in the provinces, section for 1999-2004 (in Polish). Studia i raporty, IUNG-PIB.
  • Zaliwski A.S., Purchała L., 2008. Estimation of nitrous oxide and methane from Polish agriculture. Int. Agrophysics, 22(3), 77-382.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a57f29fa-95ed-444d-8293-c8c05f5f3cf4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.