PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 5 |

Tytuł artykułu

Determining water salinity in a shallow aquifer and its vulnerability to coastline erosion

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In most coastal areas in Mexico, there is an increase in housing development and facilities for tourism, consequently resulting in a negative impact on the environment. Due to this, an awareness of the critical role of groundwater in sustaining coastal populations, economies, and ecosystems is growing. The coastal zone of Sinaloa State is classified as an area with a high presence of saline groundwater in Mexico. The present work was performed in the Las Glorias Beach, Guasave, Sinaloa, Mexico. The results of the analysis of 19 soil and groundwater samples indicate the predominance of sandy soil and a wide range of water salinity, from slightly saline to brine. An electromagnetic profiling (EMP) survey was performed at the study site showing a low apparent electrical conductivity zone parallel to the coastline as indicative of the possible presence of fresh and/or slightly saline water. Apparent electrical conductivity values were compared with electrical conductivity values measured in groundwater samples collected in wells, resulting in a positive linear correlation (R = 0.97). This linear relation is explained by a φ - ξ electromagnetic analytic model when 5.36 ≤ σₐ ≤ 85.87 mS/cm. The linear relation was used to recalculate the apparent electrical conductivity values from EMP survey into electrical conductivity values of groundwater and, therefore, TDS values. The TDS map indicates the presence of a barrier of fresh/slightly saline groundwater parallel to the coastline that keeps a fragile balance that prevents the advance of saltwater intrusion from the sea of Cortés and from brine zones located in the northern part of the site. The advance of erosion in Las Glorias Beach exposes the vulnerability of the aquifer to the saline intrusion to be advancing in time, which has affected the zone economically and socially.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

5

Opis fizyczny

p. 2001-2011,fig.,ref.

Twórcy

  • Escuela de Ciencias Económicas y Administrativas, Universidad Autonoma de Sinaloa, Blvd. Juan de Dios Batiz s/n, San Joachín, Guasave, Sinaloa, Mexico
  • División de Geociencias Aplicadas, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4 Seccion, San Luis Potosi, S.L.P., Mexico
  • Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C. Mexico; 01(646)175-05-00
  • Instituto Politecnico Nacional Unidad CIIDIR-Oaxaca, Hornos No. 1003, Noche Buena, Santa Cruz Xoxocotlan, Oaxaca, Mexico
  • Escuela de Ciencias Economicas y Administrativas, Universidad Autonoma de Sinaloa, Blvd. Juan de Dios Batiz s/n, San Joachin, Guasave, Sinaloa, Mexico
  • Centro de Investigacion Científica y de Educacion Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C. Mexico; 01(646)175-05-00
  • Facultad de Biologia, Universidad Autónoma de Sinaloa, Ciudad Universitaria

Bibliografia

  • 1. MASRIA A., NEGM A., ISKANDER M., SAAVEDRA O. Coastal zone issues: a case study (Egypt). Procedia Engineering, 70, 1102, 2014.
  • 2. MALLARD J., MCGLYNN B., COVINO T. Lateral inflows, stream‐groundwater exchange, and network geometry influence stream water composition. Water Resources Research, 50 (6), 4603, 2014.
  • 3. CUSTODIO, E. (2001). Groundwater and wetlands. The Spanish strategic plan for the conservation and wise use of wetlands, within the framework of the aquatic ecosystems on which they depend, Fundación Marcelino Botín, 2001 [In Spanish].
  • 4. RUSSONIELLO C.J., KONIKOW L.F., KROEGER K.D., FERNANDEZ C., ANDRES A.S., MICHAEL, H.A. Hydrogeologic controls on groundwater discharge and nitrogen loads in a coastal watershed. Journal of Hydrology, 538, 783, 2016.
  • 5. KIDMOSE J., NILSSON B., ENGESGAARD P., FRANDSEN M., KARAN S., LANDKILDEHUS F., SØNDERGAARD M., JEPPESEN E. Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): implications for lake ecological state and restoration. Hydrogeology Journal, 21 (8), 1787, 2013.
  • 6. AGUDO P. A. Global water crisis: values and rights at stake. Cristianisme i Justicia. Barcelona, 22, 2010 [In Spanish].
  • 7. WERNER A.D., BAKKER M., POST V.E., VANDENBOHEDE A., LU C., ATAIE-ASHTIANI B., SIMMONS C.T., BARRY D.A. Seawater intrusion processes, investigation and management: recent advances and future challenges. Advances in Water Resources, 51, 3, 2013.
  • 8. BARLOW P. M., REICHARD E. G. Saltwater intrusion in coastal regions of North America. Hydrogeology Journal, 18 (1), 247, 2010.
  • 9. MARIN L.E. Perspectives on Mexican ground water resources. Ground Water 40, 570, 2002.
  • 10. LATHAMANI R., JANARDHANA M. R., MAHALINGAM B., SURESHA S. Evaluation of aquifer vulnerability using drastic model and GIS: a case study of Mysore city, Karnataka, India. Aquatic Procedia, 4, 1031, 2015.
  • 11. RE V., SACCHI E., ALLAIS E. The use of nitrate isotopes to identify contamination sources in the Bou-Areg aquifer (Morocco). Procedia Earth and Planetary Science, 7, 729, 2013.
  • 12. ZHOU X. A method for estimating the fresh water-salt water interface with hydraulic heads in a coastal aquifer and its application. Geoscience Frontiers, 2 (2), 199, 2011.
  • 13. HEIL K., SCHMIDHALTER U. Characterisation of soil texture variability using the apparent soil electrical conductivity at a highly variable site. Computers and Geosciences, 39, 98, 2012.
  • 14. SAEY T., DE SMEDT P., DELEFORTRIE S., VAN DE VIJVER E., VAN MEIRVENNE M. Comparing one- and two-dimensional EMI conductivity inverse modeling procedures for characterizing a two-layered soil. Geoderma, 241, 12, 2015.
  • 15. STADLER A., RUDOLPH S., KUPISCH M., LANGENSIEPEN M., VAN DER KRUK J., EWERT F. Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements. European journal of agronomy, 64, 8, 2015.
  • 16. BEKELE A., HUDNALL W.H., DAIGLE J.J., PRUDENTE J.A., WOLCOTT M. Scale dependent variability of soil electrical conductivity by indirect measures of soil properties. Journal of Terramechanics 42 (3), 339, 2005.
  • 17. MURATA H., FUTAGAWA M., KUMAZAKI T., SAIGUSA M., ISHIDA M., SAWADA, K. Millimeter scale sensor array system for measuring the electrical conductivity distribution in soil. Computers and Electronics in Agriculture, 102, 43-50, 2014.
  • 18. SUDDUTH K.A., KITCHEN N.R., WIEBOLD W.J., BATCHELOR W.D., BOLLERO G.A., BULLOCK D.G., CLAYE D.E., PALM H.L., PIERCE F.J., SCHULER R.T., THELEN K. D. Relating apparent electrical conductivity to soil properties across the north-central USA. Computers and Electronics in Agriculture, 46 (1), 263, 2005.
  • 19. AMAKOR X.N., JACOBSON A.R., CARDON G.E, HAWKS A. A comparison of salinity measurement methods based on soil saturated pastes. Geoderma 219, 32, 2014.
  • 20. RONG-JIANG Y.A.O., JIN-SONG Y.A.N.G., GUANG-MING L.I.U. Calibration of soil electromagnetic conductivity in inverted salinity profiles with an integration method. Pedosphere, 17 (2), 246, 2007.
  • 21. ADAM I., MICHOT D., GUERO Y., SOUBEGA B., MOUSSA I., DUTIN G., WALTER C. Detecting soil salinity changes in irrigated Vertisols by electrical resistivity prospection during a desalinisation experiment. Agricultural water management 109, 1, 2012.
  • 22. VITHARANA U. W., VAN MEIRVENNE M., SIMPSON D., COCKX L., DE BAERDEMAEKER J. Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area. Geoderma, 143 (1), 206, 2008.
  • 23. TAYLOR J.A., COULOUMA G., LAGACHERIE P., TISSEYRE B. Mapping soil units within a vineyard using statistics associated with high-resolution apparent soil electrical conductivity data and factorial discriminant analysis. Geoderma, 153 (1), 278, 2009.
  • 24. SUDDUTH K.A., MYERS D.B., KITCHEN N.R., DRUMMOND S.T. Modeling soil electrical conductivity-depth relationships with data from proximal and penetrating EC a sensors. Geoderma, 199, 12, 2013.
  • 25. CORWIN D.L., LESCH S.M., OSTER J.D., KAFFKA S.R. Monitoring management-induced spatio-temporal changes in soil quality through soil sampling directed by apparent electrical conductivity. Geoderma, 131 (3), 369, 2006.
  • 26. FARZAMIAN M., SANTOS F.A.M., KHALIL M.A. Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil. Journal of Applied Geophysics 112, 175, 2015.
  • 27. AINI I.N., EZRIN M.H., AIMRUN W. Relationship between soil apparent electrical conductivity and pH value of Jawa Series in oil palm plantation. Agriculture and Agricultural Science Procedia, 2, 199, 2014.
  • 28. KITCHEN N.R., SUDDUTH K.A., MYERS D.B., DRUMMOND S.T., HONG S.Y. Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity. Computers and Electronics in Agriculture, 46 (1), 285, 2005.
  • 29. CORWIN D.L., PLANT R.E. Applications of apparent soil electrical conductivity in precision agriculture. Computers and Electronics in Agriculture 46 (1), 1, 2005.
  • 30. HU W., SHAO M.A., WAN L., SI B.C. Spatial variability of soil electrical conductivity in a small watershed on the Loess Plateau of China. Geoderma 230, 212, 2014.
  • 31. MCCUTCHEON M.C., FARAHANI H.J., STEDNICK J.D., BUCHLEITER G.W., GREEN T.R. Effect of soil water on apparent soil electrical conductivity and texture relationships in a dryland field. Biosystems Engineering, 94 (1), 19, 2006.
  • 32. ARCHIE G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIMME, 46, 54, 1942.
  • 33. NIWAS S., CELIK M. Equation estimation of porosity and hydraulic conductivity of Ruhrtal aquifer in Germany using near surface geophysics. Journal of Applied Geophysics, 84, 77, 2012.
  • 34. EBONG E.D., AKPAN A.E., ONWUEGBUCHE A.A.. Estimation of geohydraulic parameters from fractured shales and sandstone aquifers of Abi (Nigeria) using electrical resistivity and hydrogeologic measurements. Journal of African Earth Sciences, 96, 99, 2014.
  • 35. SOUPIOS P. M., KOULI M., VALLIANATOS F., VAFIDIS A., STAVROULAKIS G. Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in Chania (Crete-Greece). Journal of Hydrology, 338 (1), 122, 2007.
  • 36. NAKATSUKA Y., XUE Z., YAMADA Y., MATSUOKA T. Experimental study on monitoring and quantifying of injected CO₂ from resistivity measurement in saline aquifer storage. Energy Procedia, 1 (1), 2211, 2009.
  • 37. PERDOMO S., AINCHIL J.E., KRUSE E. Hydraulic parameters estimation from well logging resistivity and geoelectrical measurements. Journal of Applied Geophysics, 105, 50, 2014.
  • 38. DI MAIO R., PIEGARI E., TODERO G., FABBROCINO S. A combined use of Archie and van Genuchten models for predicting hydraulic conductivity of unsaturated pyroclastic soils. Journal of Applied Geophysics, 112, 249, 2015.
  • 39. ALCÁNTAR-ELIZONDO R. Variability temporal space of the beach profile, in Las Glorias beach. Master Thesis. Instituto Politécnico Nacional, México. 2007 [In Spanish].
  • 40. ZAYAS ESQUER M. M. Effect on Las Glorias beach caused by the construction of espogón when modifying coastal transport. Master›s Thesis. Instituto Politécnico Nacional, México, 2010 [In Spanish].
  • 41. ZAYAS ESQUER M.M., ESPINOZA CARREÓN L.T., JIMÉNEZ ILLESCAS R. Modification of coastal hydrological dynamics caused by the construction of a breakwater at Las Glorias beach, Guasave, Sinaloa, XII Congress of the Sea Cortes Researchers Association and VI International Symposium on Mar de Cortés, Guaymas, Sonora, México, 2010 [In Spanish].
  • 42. ROCHA H., CARDONA A., GRANIEL E., ALFARO C., CASTRO J., RÜDE T., HERRERA E., HEISE L. Interfaces of freshwater and brackish water in the region of Merida-Progreso, Yucatán. Tecnología y ciencias del agua, 6 (6), 89, 2015 [In Spanish].
  • 43. CUSTODIO E., LLAMAS R. Underground hydrology. Vol. 1 y 2. Barcelona: Ed. Omega. 1976 [In Spanish].
  • 44. INEGI (NATIONAL INSTITUTE OF STATISTIC AND GEOGRAPHY). Municipal statistical notebook, Guasave, Sinaloa. Aguascalientes, Mexico, First Edition, 2000 [In Spanish].
  • 45. INEGI (NATIONAL INSTITUTE OF STATISTIC AND GEOGRAPHY). Municipal Geographical Information Handbook of the United Mexican States Guasave, Sinaloa Geostatistical key 25011. México, 2009 [In Spanish].
  • 46. CONAGUA (National Water Comission). Technical file justifying the aquifer of the Sinaloa River for the publication of the availability in the Official Gazette of the Federation. Culiacán, Sinaloa, México, 2002 [In Spanish].
  • 47. KELLER G.V., FRISCHKNECHT F.C. Electrical methods in geophysical prospecting. Pergamon Press Inc., Oxford, 1966.
  • 48. Orellana E. Geoelectric prospecting by variable fields. Technical Library Philips, Paraninfo, España. 1974 [In Spanish].
  • 49. GF INSTRUMENTS, S.R.O. Short guide for electromagnetic conductivity mapping and tomography, Purkyňova, Brno, Czech Republic, 2013.
  • 50. SEMARNAT R.N. NOM-021-RECNAT-2000, Official Gazette of the Federation, December 31, México, 2002 [In Spanish].
  • 51. BOUYOUCOS G.J. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54 (5), 464, 1962.
  • 52. HEATH R.C. Basic Ground-Water Hydrology. U.S. Geological Survey Water-Supply paper 2220. United States Geological Survey, 1983.
  • 53. CHOO H., BURNS S. E. Review of Archie›s equation through theoretical derivation and experimental study on uncoated and hematite coated soils. Journal of Applied Geophysics, 105, 225, 2014.
  • 54. Himi M., Sanz N., Tapias J.C., Casas A. Usefulness of geophysical methods in the delimitation of marine intrusion in coastal aquifers. Coastal aquifers and desalination plants, 79, 2002 [In Spanish].
  • 55. Potosí G., David L. Evaluation of three soil pH correctors in the agronomic behavior of the capsicum (Capsicum annuum L.), Tropical Irazú variety in the Urcuquí canton, in the province of Imbabura (Bachelor's thesis, Babahoyo: UTB, 2011). 2011 [In Spanish].
  • 56. Armando J. Effect of different concentrations of seawater on the growth and germination of tomato genotypes (Lycopersicon esculentum Mill.) (Bachelor›s thesis, La Libertad: Universidad Estatal Península de Santa Elena). 2015 [In Spanish].
  • 57. Bohn V., Piccolo M., Perillo G. Potencial uso agrícola del agua de la laguna Unamuno. Buenos Aires, Argentina. Revista Ecosistemas, 16 (2), 77, 2007 [In Spanish].
  • 58. RAMOS-REYES R., GAMA CAMPILLO L.M, NUÑEZ GÓMEZ J.C., SÁNCHEZ HERNÁNDEZ R., HERNANDEZ TREJO H., RUÍZ ÁLVAREZ O. Adaptation of the model of coastal vulnerability in the Tabasqueño coast to climate change. Revista Mexicana de Ciencias Agrícolas, Special publication 13, 2551, 2016 [In Spanish].

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a3842f41-1cb8-4000-8cac-5b9763980f60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.