PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 1 |

Tytuł artykułu

Controlling nitrate and heavy metals content in leeks (Allium porrum L.) using arbuscular mycorrhizal fungi inoculation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This article concerns the influence of arbuscular mycorrhizal symbioses on the accumulation of nitrates and heavy metals in leeks (Allium porrum L.) of the variety Terminal. Leek plants were cultivated under field conditions in 2014 and 2015. A comparison was made of the effects of inoculation with three species of arbuscular mycorrhizal fungus: Rhizophagus intraradices (RI), Claroideoglomus claroideum (CC), and Funneliformis mosseae (FM), plus combinations of these against untreated control. Colonisation in the control was 9.5% in 2014 and 10.7% in 2015. The highest level of colonisation in the treated variants reached 60.0% (RI+FM in 2014) and 58.9% (RI+CC in 2015). The infl uence on nitrates content in leek white shaft tissues was monitored in the variant CC and variants combining two mycorrhizal fungus. The lowest nitrates content was shown in the variants RI+FM in 2014 (44.6 mg·kg⁻¹) and RI+CC in 2015 (12.2 mg·kg⁻¹). From the results, we can state that since the climatic conditions highly affected mycorrhizal symbosis development, accumulation of nitrates and heavy metals was significantly differentiated between experimental years.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.137-143,fig.,ref.

Twórcy

autor
  • Department of Vegetable Growing and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 69144 Lednice, Czech Republic
autor
  • Department of Vegetable Growing and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 69144 Lednice, Czech Republic
autor
  • Department of Vegetable and Medicinal Plants, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, Krakow, Poland
autor
  • Department of Vegetable Growing and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 69144 Lednice, Czech Republic

Bibliografia

  • 1. SMITH S.E., READ D.J. Mycorrhizal symbiosis. Academic Press, New York, USA, 2008.
  • 2. REINHARDT D. Programming good relations – development of the arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol., 10 (1), 98, 2007.
  • 3. KOIDE R.T., MOSSE B.A history of research on arbuscular mycorrhiza. Mycorrhiza, 14 (3), 145, 2004.
  • 4. SMITH J.E. Mycorrhizal Symbiosis. Soil Sci. Soc. Am. J. 73 (2), 694, 2009.
  • 5. WILLIS A., RODRIGUES B.F., HARRIS P.J.C. The ecology of arbuscular mycorrhizal fungi. Crit. Rev. Plant Sci. 32 (1), 1, 2013.
  • 6. SMITH S. Arbuscular Mycorrhizas: Physiology and Function. Soil Biol. Biochem. 33 (11), 1575, 2001.
  • 7. ANTUNES P.M., SCHNEIDER K., HILLIS D., KLIRONOMOS J.N. Can the arbuscular mycorrhizal fungus Glomus intraradices actively mobilize P from rock phosphates? Pedobiologia 51 (4), 281, 2007.
  • 8. BAUM C., EL-TOHAMY W., GRUDA N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci. Hort. 187, 131, 2015.
  • 9. HART M., EHRET D.L., KRUMBEIN A., LEUNG C., MURCH S., TURI C., FRANKEN P. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza, 25, 359, 2015.
  • 10. ELBON A., WHALEN J.K. Phosphorus supply to vegetable crops from arbuscular mycorrhizal fungi: a review. Biol. Agric. Hortic. 31 (2), 73, 2015.
  • 11. BASLAM M., GARMENDIA I., GOICOECHEA N. The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci. Hort. 164, 145, 2013.
  • 12. SORENSEN J.N., LARSEN J., JAKOBSEN I. Mycorrhiza formation and nutrient concentration in leeks (Allium porrum) in relation to previous crop and cover crop management on high P soils. Plant Soil 273 (1–2), 101, 2005.
  • 13. CHEN X., TANG J., ZHI G., HU S. Arbuscular mycorrhizal colonization and phosphorus acquisition of plants: Effects of coexisting plant species. Appl. Soil Ecol. 28 (3), 259, 2005.
  • 14. ÇEKIÇ F.Ö., ÜNYAYAR S., ORTAŞ İ. Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turk. J. Bot. 36 (1), 63, 2012.
  • 15. BONA E., CANTAMESSA S., MASSA N., MANASSERO P., MARSANO F., COPETTA A., LINGUA G., D’AGOSTINO G., GAMALERO E., BERTA G. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27, 1, 2017.
  • 16. ABDEL LATEF A.A.H., CHAOXING H. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hort. 127 (3), 228, 2011.
  • 17. GIOVANNETTI M., AVIO L., BARALE R., CECCARELLI N., CRISTOFANI R., IEZZI A., MIGNOLLI F., PICCIARELLI P., PINTO B., REALI D., SBRANA C., SCARPATO R. Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br. J. Nutr. 107 (2), 242, 2012.
  • 18. ORDOOKHANI K., KHAVAZI K., MOEZZI A., REJALI F. Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr. J. Agric. Res. 5 (10), 1108, 2010.
  • 19. PERNER H., ROHN S., DRIEMEL G., BATT N., SCHWARZ D., KROH L.W., GEORGE E. Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. J. Agric. Food Chem. 56 (10), 3538, 2008.
  • 20. MALIK N.S.A., NUÑEZ A., MCKEEVER L.C., KUNTA M., DOUDS D., NEEDLEMAN D.S. Mycorrhizal fungi collected from the rhizospheres around different olive cultivars vary in their ability to improve growth and polyphenol levels in leeks. J. Agric. Sci. 8 (8), 32, 2016.
  • 21. PAUN A., NEAGOE A., PAUN M., BACIU I., IORDACHE V. Heavy metal-induced differential responses to oxidative stress and protection by mycorrhization in sunflowers grown in lab and field scales. Pol. J. Environ. Stud. 24 (3), 1235, 2015.
  • 22. SYMBIOM.CZ. Symbiom - Dávkování přípravků. Retrieved November 21, 2015, from http://www.symbiom. cz/davkovani (2015).
  • 23. KABATA-PENDIAS A. Trace Elements in Soils and Plants. CRC Press, US, 2010.
  • 24. PHILLIPS J.M., HAYMAN D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55 (1), 158, 1970.
  • 25. MCGONIGLE T., MILLER M., EVANS D.G., FAIRCHILD G.L., SWAN J.A. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495, 1990.
  • 26. ROUPHAEL Y., FRANKEN P., SCHNEIDER C., SCHWARZ D., GIOVANNETTI M., AGNOLUCCI M., COLLA G. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hort. 196, 91, 2015.
  • 27. REDECKER D., SCHÜSSLER A., STOCKINGER H., STÜRMER S.L., MORTON J.B., WALKER C. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23 (7), 515, 2013.
  • 28. OEHL F., DA SILVA G.A., GOTO B.T., SIEVERDING E. Glomeromycota: three new genera and glomoid species reorganized. Mycotaxon 116 (1), 75, 2011.
  • 29. TIAN C., KASIBORSKI B., KOUL R., LAMMERS P.J., BÜCKING H., SHACHAR-HILL Y. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153 (3), 1175, 2010.
  • 30. BEHIE S.W., BIDOCHKA M.J. Nutrient transfer in plant-fungal symbioses. Trends Plant Sci. 19 (11), 734, 2014.
  • 31. RIOS J.J., BLASCO B., ROSALES M.A., SANCHEZ-RODRIGUEZ E., LEYVA R., CERVILLA L.M., RUIZ J.M. Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. J. Sci. Food Agric. 90 (11), 1914, 2010.
  • 32. SANMARTÍN C., GARMENDIA I., ROMANO B., DÍAZ M., PALOP J.A., GOICOECHEA N. Mycorrhizal inoculation affected growth, mineral composition, proteins and sugars in lettuces biofortified with organic or inorganic selenocompounds. Sci. Hort. 180, 40, 2014.
  • 33. DIAZ G., AZCÓN-AGUILAR C., HONRUBIA M. Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180 (2), 241, 1996.
  • 34. MOZAFAR A., RUH R., KLINGEL P., GAMPER H., EGLI S., FROSSARD E. Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization of roots and metal uptake by leek. Environ. Monit. Assess. 79 (2), 177, 2002.
  • 35. LIU H., YUAN M., TAN S., YANG X., LAN Z., JIANG Q., JING Y. Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cdhyperaccumulator Solanum nigrum. Appl. Soil Ecol. 89 (89), 44, 2015.
  • 36. KUMAR P., LUCINI L., ROUPHAEL Y., CARDARELLI M., KALUNKE R.M., COLLA G. Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front. Plant Sci. 6, 477, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a37866c9-d8e9-4078-9cf7-cae2508e356b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.