PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 |

Tytuł artykułu

Changing the potential distribution of Turkey oak (Quercus cerris L.) under climate change in Turkey

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Turkey oak (Q. cerris) is an important species for rehabilitating soils, promoting conservation, and increasing biodiversity. It is also a fire-resistant plant. To predict the potential distribution of this species under climate change is crucial for better understanding the future of ecosystems – in particular Mediterranean ecosystems. The purpose of this study was to generate the potential distribution maps of Turkey oak under current and changing climate in the Sütçüler district located in the translation zone of the Mediterranean region. Classification and regression tree technique (CART) was applied to model the distribution of the species (response data) using current climatic data, parent material, landform types, and topographical position index (explanatory data). Geographic information system (GIS) was used for visualizing current potential distribution of the species. Next, the obtained distribution model was simulated to the digital data of climatic change scenario b2 of IPCC. In this way, changing the potential distribution of Turkey oak along the district was predicted under climate change.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

4

Opis fizyczny

p.1633-1638,fig.,ref.

Twórcy

autor
  • Suleyman Demirel University, Isparta, Turkey
autor
  • Department of Soil and Forest Ecology, Faculty of Forestry, Suleyman Demirel Univ., 32260, Isparta, Turkey
autor
  • Mehmet Akif Ersoy University, Golhisar Vocational School, Burdur, Turkey
autor
  • Sütçüler Prof. Dr. Hasan Gurbuz Vocational School, Suleyman Demirel University, Isparta, Turkey

Bibliografia

  • 1. KARL T.R., TRENBERTH K.E. Modern global climate change. Science. 302, 17193, 2003.
  • 2. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC) [Online]. Climate Change: The Physical Science Basis. Summary for Policy Makers, [Accessed 20.04.2013.]. 2007, Available: http://www.ipcc.ch/, 2007.
  • 3. GALLEGO-SALA A., CLARK J., HOUSE J., ORR H., PRENTICE I.C., SMITH P., CHAPMAN S. Bioclimatic envelope model of climate change impacts on blanket peatland distribution in Great Britain. Climate Research, 45, 151, 2010.
  • 4. PACHECO S., MALIZIA L.R., CAYUELA L., Effects of climate change on subtropical forests of South America. Tropical Conservation Science. 3 (4), 423, 2010.
  • 5. EVANGELISTA P.H., KUMAR S., STOHLGREN T.J., YOUNG N.E. Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. Forest Ecology and Management, 262 (3), 307, 2011.
  • 6. LATTA G., TEMESGEN H., ADAMS D., BARRETT T. Analysis of potential impacts of climate change on forests of the United States Pacific Northwest. Forest Ecology and Management, 259 (4), 720, 2010.
  • 7. SOMMER J.H., KREFT H., KIER G., JETZ W., MUTKE J., BARTHLOTT W. Projected impacts of climate change on regional capacities for global plant species richness. Proceedings of the Royal Society of London B: Biological Sciences, rspb20100120, 2010.
  • 8. ENGLER R., RANDIN C.F., VITTOZ P., CZÁKA T., BENISTON M., ZIMMERMANN N.E., GUISAN A. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter?. Ecography, 32 (1), 34, 2009.
  • 9. RANDIN C.F., ENGLER R., NORMAND S., ZAPPA M., ZIMMERMANN N.E., PEARMAN P.B., GUISAN A. Climate change and plant distribution. Local models predict high-elevation persistence. Global Change Biology. 15, 1557, 2009.
  • 10. VAN ZONNEVELD M., KOSKELA J., VINCETI B., JARVIS A. Impact of climate change on the distribution of tropical pines in Southeast Asia. Unasylva. 231/232 (60), 24, 2009.
  • 11. POMPE S., HANSPACH J., BADECK F., KLOTZ S., THUILLER W., KÜHN I. Climate and land use change impacts on plant distribution in Germany. Biol. Lett. 4, 564-,2008.
  • 12. TRIVEDI M.R., BERRY P.M., MORECROFT M.D., DAWSON T.P. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Global Change Biology. 14, 1089, 2008.
  • 13. HAMANN A., WANG T., Potantial effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology. 87 (11), 2773, 2006.
  • 14. SHI J.B., Li D.Q., XIAO W.F. A review of impacts of climate change on birds: Implications of long-term studies. Zoological Research. 27, 637, 2006.
  • 15. CHAMBERS L.E., HUGHES L.,WESTON M.A. Climate change and its impact on Australia’s avifauna. Emu. 105, 1, 2005.
  • 16. WALTHER G.R., POST E., CONVEY P., MENZEL A., PARMESAN C., BEEBEE T.J., BAIRLEIN F. Ecological responses to recent climate change. Nature. 416, 389, 2002.
  • 17. KRITICOS D.J., SUTHERST R. W., BROWN J.R., ADKINS S.W., MAYWALD G.F. Climate change and potential distribution of an invasive alien plant: Acacia nilotica ssp. Indica in Australia. Journal of Applied Ecology. 40, 111, 2003.
  • 18. PAULI H., GOTTFRIED M., GRABHERR G., Effects of Climate Change on the Alpine and Nival Vegetation of the Alps. J. Mt. Ecol. 7, 9, 2003.
  • 19. SHAFER S.L., BARTLEIN P.J., THOMPSON R.S., Potantial Changes in the Distribution of Western North America Tree and Shrup Taxa under Future Climata Scenarios. Ecosystems. 4, 200, 2001.
  • 20. PETIT R.J., HAMPE A., CHEDDADI R. Climate changes and tree phylogeography in the Mediterranean. Taxon. 54 (4), 877, 2005.
  • 21. GOVERNMENT METEOROLOGICAL INSTITUTE (DMI) Meteorological Data of Sutculer District between 1975-1993. Sutculer/Isparta, Turkey, 2006.
  • 22. FONTAINE M., AERTS R., ÖZKAN K., MERT A., GULSOY S., SUEL H., MUYS B. Elevation and exposition rather than soil types determine communities and site suitability in Mediterranean mountain forests of southern Anatolia, Turkey. Forest Ecol Manag. 247, 18, 2007.
  • 23. OZKAN K., GULSOY S., Effects of environmental factors on the productivity of crimian pine (Pinus nigra ssp. Pallasiana) in Sutculer, Turkey. J. Environ. Biol. 30 (6), 965, 2009.
  • 24. OZCELIK H., KORKMAZ M., Contributions to the flora of Sutculer- Isparta (Turkey). Bull. Pure Appl. Sci. 21, 1, 2002.
  • 25. HIJMANS R.J., CAMERON S.E., PARRA J.L., JONES P.G., JARVIS A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 25, 1965, 2005.
  • 26. WEISS A. Topographic Position and Landforms Analysis. In: ESRI User Conference, San Diego, CA, 2001.
  • 27. BREIMAN L., FRIEDMAN J., STONE C.J., OLSHEN R.A. Classification and Regression Trees. In: Wadsworth International Group, CRC Press, Belmont, California, USA, 1984.
  • 28. MCKENNEY D.W., PEDLAR J.H. Spatial models of site index based on climate and soil properties for two boreal tree species in Ontario, Canada. Forest Ecol Manag. 175, 497, 2003.
  • 29. CHU C.M., TSAI B.W., CHANG K.T. Integrating Decision Tree and Spatial Cluster Analysis for Landslide Susceptibility Zonation. World Academy of Science, Engineering and Technology. 59, 470, 2009.
  • 30. NAVARRATE E., ESPINOSA M. Using the Non-Parametric Classifies CART to Model Wood Density. J Data Sci. 9, 261, 2011.
  • 31. DE’ATH G., FABRICIUS K.E. Classification and Regression Trees: A Powerful Yet Simple Technique for Ecological Data Analysis. Ecology. 81 (11), 3178, 2000.
  • 32. MOISEN G.G. Classification and Regression Tree. In: Encyclopedia of Ecology, In: Jorgensen SE (ed), 582, 2008.
  • 33. MATHSOFT, S-PLUS 4 Guide to Statistics. In: MathSoft, Inc., Seattle, WA, 1997.
  • 34. JOHNSON C.J., GILLINGHAM M.,P. An evaluation of mapped species distribution models used for conversation planning. Environmental Conservation. 32 (2), 1, 2005.
  • 35. MARTINEZ J.A., SERRANO D., ZUBEROGOITIA I. Predictive models of habitat preferences for the Eurasian eagle owl Bubo bubo: a multiscale approach. Ecography, 26, 21, 2003.
  • 36. PETERSON A.T., PAPES M., EATON M. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography. 30, 550, 2007.
  • 37. ORTEGA-HUERTA M.A., PETERSON A.T. Modeling ecological niches and predicting geographic distributions: a test of six presence – only methods. Revista Mexicana de Biodiversidad. 79, 205, 2008.
  • 38. GANESHAIAH K.N., BARVE N., NATH N., CHANDRASHEKARA K., SWAMY M., UMA SHAANKER R. Predicting the potential geographical distribution of the sugarcane woolly aphid using GARP and Diva-Gis. Current Science. 85, 1526, 2003.
  • 39. GALLEGO D., CÁNOVAS F., ESTEVE M.A., GALIÁN J. Descriptive biogeography of Tomicus (Coleoptera: Scolytidae) species in Spain. Journal of Biogeography. 31, 2011, 2004.
  • 40. VETAAS O.R., GRYTNES J.A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology & Biogeography. 11, 291, 2002.
  • 41. SOUSA P., AZEVEDO M., GOMES M.C. Species-richness patterns in space, depth, and time (1989-1999) of the Portuguese fauna sampled by bottom trawl. Aquatic Living Resources. 19, 93, 2006.
  • 42. DRAKE J.M., BOSSENBROEK J.M. The potential distribution of Zebra Mussels in the United States. BioScience. 54 (10), 931, 2004.
  • 43. KASCHNER K., WATSON R., TRITES A.W. Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Marine Ecolocy Progress Series. 316, 285, 2006.
  • 44. GUISAN A., THEURILLAT J. Assessing alpine plant vulnerability to climate change: a modeling perspective, Integrated Assessment. 1, 307, 2000.
  • 45. THOMAS C.D., CAMERON A., GREEN R.E., BAKKENES M., BEAUMONT L.J., COLLİNGHAM Y. C., HUGHES L. Extinction risk from climate change, Nature. 427, 145, 2004

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a34d83fb-1bf6-4c0a-95ba-f14e32eb1021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.