PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 18 |

Tytuł artykułu

Protozoan communities in the Vistula River estuary (Baltic Sea)

Treść / Zawartość

Warianty tytułu

Zbiorowiska pierwotniaków w estuarium Wisły (Morze Bałtyckie)

Języki publikacji

EN

Abstrakty

EN
Protozoan communities (heterotrophic nanoflagellates, dinoflagellates, and ciliates) were studied along the Vistula River estuary (southern Baltic Sea) in June 2005. Protozoan biomass ranged from 64.1 to 162 μgC l-1 close to the river mouth and decreased to 20.7 μgC l-1 at the most offshore station. The negative correlation between distance from the mouth and protozoan biomass was highly statistically significant. Within the estuary, the majority of the biomass was contributed by heterotrophic dinoflagellates and Ebria tripartita (71% on average), whereas heterotrophic nanoflagellates and ciliates contributed 22% and 7% of the protozoan biomass, respectively. At the offshore station, the contribution of heterotrophic dinoflagellates decreased to typical value of 25%. The study confirmed elevated significance of heterotrophic dinoflagellates and E. tripartita in the Gulf of Gdańsk. Correlation analysis revealed that all groups of protozoa were significantly and positively related to phytoplankton biomass or primary production, but only heterotrophic ciliates were related to bacterial secondary production.
PL
Zbiorowiska pierwotniaków (heterotroficzne wiciowce, bruzdnice i orzęski) badano wzdłuż estuarium rzeki Wisły (Bałtyk Południowy). Badania przeprowadzono po wiosennym zakwicie fitoplanktonu, pobierając próby z wód powierzchniowych. Biomasa pierwotniaków wynosiła 64,1-162 μgC l-1 blisko ujścia rzeki i stopniowo spadała do 20,7 μgC l-1 na najbardziej wysuniętym w morze stanowisku (64,3 mil morskich od ujścia rzeki). Zaobserwowana zależność pomiędzy odległością od ujścia a biomasą pierwotniaków była wysoce istotna statystycznie. W obrębie estuarium większość biomasy zbiorowiska pierwotniaków (średnio 71%) stanowiły heterotroficzne bruzdnice (razem z Ebria tripartita), podczas gdy heterotroficzne wiciowce i orzęski osiągały odpowiednio 22% i 7% całkowitej biomasy pierwotniaków. Na najbardziej wysuniętym w morze stanowisku udział heterotroficznych bruzdnic do biomasy spadał do 25%, co jest wartością typową, ponieważ w wodach morskich trzy wymienione grupy pierwotniaków zwykle wykazują porównywalną biomasę. Badania potwierdziły szczególnie duże znaczenie heterotroficznych bruzdnic i Ebria tripartita w Zatoce Gdańskiej i wykazały, że ma to związek z napływem wód wnoszonych przez Wisłę. Analiza statystyczna wykazała, że wszystkie grupy pierwotniaków były powiązane z biomasą fitoplanktonu lub wielkością produkcji pierwotnej, podczas gdy tylko heterotroficzne orzęski wykazały istotną korelację z wielkością produkcji wtórnej bakterioplanktonu.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Opis fizyczny

p.39-53,fig.,ref.

Twórcy

autor
  • Department of Ecology, Pomeranian University in Slupsk, Arciszewskiego 22b, 76-200 Slupsk, Poland
autor
  • Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kollataja 1, 81-332 Gdynia, Poland
  • Department of Ecology, Pomeranian University in Slupsk, Arciszewskiego 22b, 76-200 Slupsk, Poland
  • Department of Ecology, Pomeranian University in Slupsk, Arciszewskiego 22b, 76-200 Slupsk, Poland

Bibliografia

  • Arndt H., 1991. On the importance of planktonic protozoans in the eutrophication process of the Baltic Sea. Int. Revue ges. Hydrobiol., 3, 387-396.
  • Azam F., Fenchel T., Field J.D., Gray J.S., Meyer-Reil L.A., Thingstad F., 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257-263.
  • Beaver J.R., Crisman T.L., 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr., 27, 246-253.
  • Børsheim K.Y., Bratbak G., 1987. Cell volume to carbon conversion factors for a bacteriovorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser., 36, 171-175.
  • Bralewska J., Witek Z., 1995. Heterotrophic dinoflagellates in the ecosystem of the Gulf of Gdańsk. Mar. Ecol. Prog. Ser., 117, 241-248.
  • Brandt S.M., Sleigh M.A., 2000. The quantitative occurrence of different taxa of heterotrophic flagellates in Southampton Water, U.K. Estuar. Coast. Shelf Sci., 51, 91-102.
  • Calbet A., Landry M.R., Nunnery S., 2001. Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific. Aquat. Microb. Ecol., 23, 283-292.
  • Caron D.A., 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. Environ. Microbiol., 46, 491-498.
  • Caron D.A., Swanberg N.R., 1990. The ecology of planktonic sarcodines. Aquat. Sci., 3, 147-180.
  • Christaki U., Courties C., Joux F., Jeffrey W.H., Neveux J., Naudin J.-J., 2009. Community structure and trophic role of ciliates and heterotrophic nanoflagellates in Rhone River diluted mesoscale structures (NW Mediterranean Sea). Aquat. Microb. Ecol., 57, 263-277.
  • Cole J.J., Findlay S., Pace M.L., 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser., 43, 1-10.
  • Drebes G., 1974. Marines Phytoplankton, Georg Thieme Verlag, Stuttgart, (in German).
  • Ducklow H.W., Purdie D.A., Williams P.J. le B., Davies J.M., 1986. Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science, 232, 865-867.
  • Dutz J., Peters J., 2008. Importance and nutritional value of large ciliates for the reproduction of Acartia clausi during the post spring-bloom period in the North Sea. Aquat. Microb. Ecol., 50, 261-277.
  • Esteban G.F., Fenchel T., Finlay B.J., 2010. Mixotrophy in ciliates. Protist, 161, 621-641. Fenchel T., 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser., 9, 35-42.
  • Grinienė E., Mažeikaitė S., Gasiūnaitė Z.R., 2011. Inventory of the taxonomical composition of the plankton ciliates in the Curonian Lagoon (SE Baltic Sea). Oceanol. Hydrobiol. Stud., 40, 86-95.
  • Hansen P.J., 1991. Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser., 73, 253-261.
  • Hargraves P.E., 2002. The ebridian flagellates Ebria and Hermesinum. Plankton Biol. Ecol., 49, 9-16.
  • HELCOM, 2001. Manual for marine monitoring in the COMBINE programme of HELCOM, www.helcom.fi/groups/monas/CombineManual/AnnexesC/en_GB/annex6/ HELCOM, 2004, The fourth Baltic Sea pollution load compilation (PLC-4), Balt. Sea Environ.Proc., 93.
  • Identifying marine phytoplankton. 1997. (Ed.) C.R. Tomas, Academic Press, San Diego.
  • Jeong H.J., 1999. The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J. Eukaryot. Microbiol., 46, 390-396.
  • Kwiatkowska M., 1999. Autotroficzne i heterotroficzne bruzdnice w przybrzeżnej strefie Zatoki Gdańskiej. (Autotrophic and heterotrophic dinoflagellates in the coastal zone of the Gulf of Gdańsk). M.Sc. Thesis, University of Gdańsk, Gdańsk, (in Polish).
  • Landry M.R., Kirchman D.L., 2002. Microbial community structure and variability in the tropical Pacific. Deep-Sea Res. II, 49, 2669-2693.
  • Leakey R.J.G., Burkill P.H., Sleigh M.A., 1993. Planktonic ciliates in Southampton water: quantitative taxonomic studies. J. Mar. Biol. Ass. U.K., 73, 579-594.
  • Lesen A.E., Juhl A.R., Anderson O.R., 2010. Heterotrophic microplankton in the lower Hudson River Estuary: potential importance of naked, planktonic amebas for bacterivory and carbon flux. Aquat. Microb. Ecol., 61, 45-56.
  • Mackiewicz T., 1991. Composition and seasonal changes of nanoflagellates in the Gdańsk Basin (Southern Baltic). Acta Ichthyol. Piscat., 21 Suppl., 125-134.
  • Maeda M., Carey P.G., 1985. An illustrated guide to the species of the family Strombidiidae (Oligotrichida), free swimming protozoa common in aquatic environment. Bull. Ocean. Res. Inst. Univ. Tokyo, 19, 1-68.
  • Majewski A., 1987. Charakterystyka wód. W: Bałtyk Południowy. (Characteristics of waters. In: The Southern Baltic). (Ed.) B. Augustowski, Ossolineum, Wrocław, 173-217, (in Polish).
  • Marshall S.M., 1969. Protozoa. Order: Tintinnida. In: Fishes d’identification du Zooplancton. (Eds) J.H. Fraser and V.K. Hanson, Cons. Int. Explor. Mer. Zooplankton Sheets, Charlottenlund, 117-127.
  • McManus G.B., Fuhrman J.A., 1990. Mesoscale and seasonal variability of heterotrophic nanoflagellate abundance in an estuarine outflow plume. Mar. Ecol. Prog. Ser., 61, 207-213.
  • Menden-Deuer S., Lessard E., 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr., 45, 569-579.
  • Mironova E.I., Telesh I.V., Skarlato S.O., 2009. Planktonic ciliates of the Baltic Sea (a review). Inland Water Biol., 2, 13-24.
  • Mironova E., Telesh I., Skarlato S., 2012. Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea). J. Plankton Res., 34, 208-220.
  • Montagnes D.J.S., 2013. Ecophysiology and behaviour of tintinnids. In: The biology and ecology of tintinnid ciliates. Models for marine plankton. (Eds) J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats, D.K. Stoecker, Wiley-Blackwell, Chichester, 85-121.
  • Montagnes D.J.S., Kimmance S.A., Tsounis G., Gumbs J.C., 2001. Combined effect of temperature and food concentration on the grazing rate of the rotifer Brachionus plicatilis. Mar. Biol., 139, 975-979.
  • Olenina I., Hajdu S., Edler L., Andersson A., Wasmund N., Busch S., Gobel J., Gromisz S., Huseby S., Huttunen M., Jaanus A., Kekkonen P., Ledaine I., Ziemkiewicz E., 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea, HELCOM Baltic Sea Environment Proceedings, 106.
  • Piwosz K., Pernthaler J., 2010. Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic Sea. Environ. Microbiol., 12, 364-377.
  • Pollehne F., Busch S., Jost G., Meyer-Harms B., Nausch M., Reckermann M., Schaening P., Setzkorn D., Wasmund N., Witek Z., 1995. Primary production patterns and heterotrophic use of organic material in the Pomeranian Bay (southern Baltic). Bull. Sea Fish. Inst., 136, 43-60.
  • Revelante N., Gilmartin M., 1987. Seasonal cycle of the ciliated protozoan and micrometazoan biomass in a Gulf of Maine Estuary. Estuar. Coast. Shelf Sci., 25, 581-598.
  • Rogerson A., Anderson O.R., Vogel C., 2003. Are planktonic naked amoebae predominately floc associated or free in the water column? J. Plankton Res., 25, 1359-1365.
  • Rollwagen-Bollens G., Gifford S., Bollens S.M., 2011. The role of protistan microzooplankton in the upper San Francisco Estuary planktonic food web: source or sink? Estuar. Coast., 34, 1026-1038.
  • Rychert K., 2011. Communities of heterotrophic protists (protozoa) in the near-bottom zone of the Gdańsk Basin. Oceanol. Hydrobiol. Stud., 40, 68-73.
  • Rychert K., Spich K., Laskus K., Pączkowska M., Wielgat-Rychert M., Sojda G., 2013. Composition of protozoan communities at two stations in the coastal zone of the southern Baltic Sea. Oceanol. Hydrobiol. Stud., 42, 268-276.
  • Sanders R.W., 1987. Tintinnids and other microzooplankton – seasonal distributions and relationship to resources and hydrography in a Main estuary. J. Plankton Res., 9, 65-77.
  • Setälä O., Kivi K., 2003. Planktonic ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact. Aquat. Microb. Ecol., 32, 287-297.
  • Sherr B.F., Sherr E.B., 1991. Proportional distribution of total numbers, biovolume, and bacterivory among size classes of 2-20 μm nonpigmented marine flagellates. Mar. Microb. Food Webs, 5, 227-237.
  • Sherr E.B., Sherr B.F., 2002. Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek, 81, 293-308.
  • Smetacek V., 1981. The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol., 63, 1-11.
  • Strom S.L., Postel J.R., Booth B.C., 1993. Abundance, variability, and potential grazing impact of planktonic ciliates in the open subarctic Pacific Ocean. Prog. Oceanog., 32, 185-203.
  • Strüder-Kypke M.C., Montagnes D.J.S., 2002. Development of web-based guides to planktonic protists. Aquat. Microb. Ecol., 27, 203-207.
  • Thomsen H.A., 1992. Plankton i de indre danske forvande. Analyse af forekomsten af alger og heterotrofe protister (ekskl.ciliater) i Kattegat. (Plankton from inner Danish waters. An analysis of the autotrophic and heterotrophic protists (excl. ciliates) in Kattegat). Havforskning fra Miløstyrelsen, 11, (in Danish).
  • Throndsen J., Hasle G.R., Tangen K., 2007. Phytoplankton of Norwegian coastal waters. Almater Forlag As, Oslo.
  • Urrutxurtu I., Orive E., de la Sota A., 2003. Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Est. Coast. Shelf Sci., 57, 1169-1182.
  • Vaqué D., Casamayor E.O., Gasol J.M., 2001. Dynamics of whole community bacterial production and grazing losses in seawater incubations as related to the changes in the proportions of bacteria with different DNA content. Aquat. Microb. Ecol., 25, 163-177.
  • Verity P.G., Borkman D.G., 2010. A decade of change in the Skidaway River Estuary. III. Plankton. Estuar. Coast., 33, 513-540.
  • Verity P.G., Langdon C., 1984. Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res., 6, 859-867.
  • Wielgat-Rychert M., Ameryk A., Jarosiewicz A., Kownacka J., Rychert K., Szymanek L., Zalewski M., Agatova A., Lapina N., Torgunova N., 2013. Impact of the inflow of the Vistula River waters on the pelagic zone in the Gulf of Gdańsk. Oceanologia, 55, 859-886.
  • Witek M., 1994. Planktonowe orzęski Basenu Gdańskiego. (Planktonic ciliates of the Gdańsk Basin). Ph.D. Thesis, Sea Fisheries Institute, Gdynia, (in Polish).
  • Witek M., 1998. Annual changes of abundance and biomass of planktonic ciliates in the Gdańsk Basin, southern Baltic. Internat. Rev. Hydrobiol., 83, 163-182.
  • Witek B., Pliński M., 2005. The occurrence of dinoflagellates in the phytoplankton of the Gulf of Gdańsk coastal zone in 1994-1997. Oceanol. Hydrobiol. Stud., 2, 63-70.
  • WoRMS Editorial Board, 2014. World Register of Marine Species, www.marinespecies.org
  • Wrzesińska-Kwiecień M., Mackiewicz T., 1995. Protozooplankton of the Pomeranian Bay (southern Balic). Bull. Sea Fish. Inst., 136, 89-95.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a293f56d-d374-4efe-83ca-1abbbf4cba34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.