PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 08 |

Tytuł artykułu

Gene expression profile of Arabidopsis under sodium bisulfite treatment by oligo-microarray analysis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Low concentrations of sodium bisulfite (NaHSO3) can enhance some plant photosynthetic efficiency. To investigate the growth process of Arabidopsis seedlings in response to NaHSO3 treatment and to obtain a better understanding the mechanism of NaHSO3 treatment toward Arabidopsis, microarray experiments on Arabidopsis thaliana were performed in the present study. Seedlings growth and physiological responses of Arabidopsis to NaHSO3 were investigated. The results indicated that the NaHSO3 response was related to photosynthesis pathways and reactive oxygen species (ROS) accumulation. Our findings could provide valuable gene resources and theoretical information for understanding the physiological responses and dissecting the NaHSO3 response pathways in higher plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

08

Opis fizyczny

fig.,ref.

Twórcy

autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People’s Republic of China
autor
  • College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People’s Republic of China
autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People’s Republic of China
autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People’s Republic of China
autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People’s Republic of China
autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People’s Republic of China
autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People’s Republic of China
autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People’s Republic of China

Bibliografia

  • Alexandersson E, Saalbach G, Larsson C, Kjellbom P (2004) Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking. Plant Cell Physiol 45:1543–1556
  • Alsterfjord M, Sehnke PC, Arkell A, Larsson H, Svennelid F, Rosenquist M, Ferl RJ, Sommarin M, Larsson C (2004) Plasma membrane H+-ATPase and 14-3-3 isoforms of Arabidopsis leaves: evidence for isoform specificity in the 14-3-3/H+- ATPase interaction. Plant Cell Physiol 45:1202–1210
  • Bejai S, Fridborg I, Ekbom B (2012) Varied response of Spodoptera littoralis against Arabidopsis thaliana with metabolically engineered glucosinolate profiles. Plant Physiol Biochem 50:72–78
  • Beyer WF, Fridovich Y (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566
  • Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42:111–123
  • Chowhan N, Bali AS, Singh HP, Batish DR, Kohli RK (2014) Reactive oxygen species generation and antioxidant defense system in hydroponically grown wheat (Triticum sestivum) upon b-pinene exposure: an early time course assessment. Acta physiol plant 36:3137–3146
  • Clagett CO, Tolbert NE, Burris RH (1949) Oxidation of a-hydroxy acids by enzymes from plant. Biol Chem 178:977–987
  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285
  • Deyholos M, Galbraith DW (1949) High-density microarrays for gene expression analysis. Cytometry 43:229–238
  • Du YY, Wang PC, Chen J, Song CP (2008) Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol 50:1318–1326
  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:64–70
  • Faith CB, Thomas L, Boyang C, Alan LK (1995) Evidence for the thiamine biosynthetic pathway in higher-plant plastids and its developmental regulation. Plant Mol Biol 29:809–821
  • Fork DC, Herbert SK (1993) Electron transport and photophosphorylation by photosystem I in vivo in plants and cyanobacteria. Photosynth Res 36:149–168
  • Foroozanfar M, Exbrayat S, Gentzbittel L, Bertoni G, Maury P, Naghavie MR, Peyghambari A, Badri M, Ben C, Debelle F, Sarrafi A (2014) Genetic variability and identification of quantitative trait loci affecting plant growth and chlorophyll fluorescence parameters in the model legume Medicago truncatula under control and salt stress conditions. Func Plant Biol 41:983–1001
  • Franzmann LH, Yoon ES, Meinke DW (1995) Saturating the genetic map of Arabidopsis thaliana with embryonic mutations. Plant J 7:341–350
  • Gao YZ, Cao XZ, Wang Z (1981) On the research of the chemical control to photo-respiration. Acta Phytophysiol Sin 7:327–331
  • Guo YP, Su JH, Wang HW, Shen YG, Zhang LC (2003) Attenuation of chilling effect on photosynthesis of satsuma mandarin (Citrus unshiu Marc.) by NaHSO3 application. Acta Hort Sin 30:195–197
  • Guo Y, Hu MJ, Zhou HF, Zhang LC, Su JH, Wang HW, Shen YG (2006) Low concentrations of NaHSO3 increase photosynthesis, biomass, and attenuate photoinhibition in Satsuma mandarin (Citrus unshiu Marc.) plants. Photosynthetica 44:333–337
  • Henry RP (1996) Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annu Rev Physiol 58:523–538
  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997) Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J Exp Bot 48:1105–1113
  • Hsiyung YC, Chen YA, Chen SY, Chi WC, Lee RH, Chiang TY, Huang HJ (2013) Volatilized myrcene inhibits growth and activates defense responses in rice roots. Acta Physiol Plant 35:2475–2482
  • Ji BH, Tan HH, Zhou R, Jiao DM, Shen YG (2005) Promotive effect of low concentrations of NaHSO3 on photophosphorylation and photosynthesis in phosphoenolpyruvate carboxylase transgenic rice leaves. J Integr Plant Biol 47:178–186
  • Julliard J, Douce R (1991) Biosynthesis of the thiazole moiety of thiamine (vitamin B1) in higher plant chloroplasts. Proc Natl Acad Sci USA 88:2042–2045
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids, pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382
  • Liu F, Jiang HL, Ye SQ, Chen WP, Liang WX, Xu YX, Sun B, Sun JQ, Wang QM, Jerry DC, Li CY (2010) The Arabidopsis P450 protein CYP82C2 modulates jasmonate induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res 20:539–552
  • MacAdam JW, Nelson CJ, Sharp RE (1992) Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol 99:872–878
  • Mahajaan NS, Mishra M, Tamhane VA, Gupta VS, Giri AP (2014) Stress inducible proteomic changes in Capsicum annuum leaves. Plant Physiol Biochem 74:212–217
  • Messner B, Thulke O, Schaeffner AR (2003) Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta 217:138–146
  • Owens IS, Basu NK, Banerjee R (2005) UDP-glucuronosyltransferases: gene structures of UGT1 and UGT2 families. Methods Enzymol 400:1–22
  • Palmgren MG (2001) Plant plasma membrane H+-ATPase: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845
  • Perales M, Eubel H, Heinemeyer J, Colaneri A, Zabaleta E, Braun HP (2005) Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I+III2 levels and alters mitochondrial physiology in Arabidopsis. J Mol Biol 350:263–277
  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051
  • Schuchardt J, Beule D, Malik A, Wolski E, Eickhoff H, Lehrach H, Herzel H (2000) Normalization strategies for cDNA microarrays. Nucleic Acids Res 28:E47
  • Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEBS Microbiol Rev 24:335–366
  • Somerville CR (2001) An early Arabidopsis demonstration. Resolving a few issues concerning photorespiration. Plant Physiol 125:20–24
  • Sun XH, Zhu AD, Liu SZ, Sheng L, Ma QL, Zhang L, Nishawy EME, Zeng YL, Xu J, Ma ZC, Cheng YJ, Deng XX (2013) Integration of metabolomics and subcellular organelle expression microarray to increase understanding the organic acid changes in post-harvest citrus fruit. J Integr Plant Biol 55:1038–1053
  • Sunderhaus S, Dudkina NV, Jansch L, Klodmann J, Heinemeyer J, Perales M, Zabaleta E, Boekema EJ, Braun HP (2006) Carbonic Anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in Plants. J Biol Chem 281:6482–6488
  • Tan S, Shen YK (1987) The effects of sodium bisulfite on photosynthetic apparatus and its operation. Acta Phytophysiol Sin 13:42–50
  • Tashian RE (1989) The carbonic anhydrases: widening perspectives on their evolution, expression and function. BioEssays 10:186–192
  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220
  • Wang HW, Shen YK (2002) How bisulfite enhances photosynthesis. J Plant Physiol Mol Biol 28:247–252
  • Wang HW, Wei J, Shen YG, Zhang RX, Yang TN (2000) Enhancement of photophosphorylation and photosynthesis in rice by low concentrations of NaHSO3 under field conditions. Acta Bot Sin 42:1295–1299
  • Wang HW, Mi HL, Ye JY, Deng Y, Shen YK (2003) Low concentrations of NaHSO3 increase cyclic photophosphorylation and photosynthesis in cyanobacterium Synechocystis PCC6803. Photosynth Res 75:151–159
  • Wu YX, Zheng FF, Ma WM, Han ZG, Gu Q, Shen YK, Mi HL (2011) Regulation of NAD(P)H dehydrogenase-dependent cyclic electron transport around PSI by NaHSO3 at low concentrations in tobacco chloroplasts. Plant Cell Physiol 52:1734–1743
  • Xu J, Su ZH, Chen C, Han HJ, Zhu B, Fu XY, Zhao W, Jin XF, Wu AZ, Yao QH (2012) Stress response to phenol in Arabidopsis and transcriptional changes revealed by microarray analysis. Planta 235:399–410
  • Zelitch I (1957) α-Hydroxysulfonates as inhibitors of the enzymatic oxidation of glycolic and lactic acids. J Biol Chem 224:251–260
  • Zhou HF, Guo YP, Lin JX, Fang ZG (2003) Promotion of NaHSO3 to photosynthetic rate in leaf of Eriobotrya Japonica and Zizyphus mauritiana. J Fruit Sci 20:239–241
  • Zhu B, Peng RH, Xiong AS, Fu XY, Zhao W, Tian YS, Jin XF, Xue Y, Xu J, Han HJ, Chen C, Gao JJ, Yao QH (2012) Analysis of gene expression profile of Arabidopsis genes under trichloroethylene stresses with the use of a full-length cDNA microarray. Mol Biol Rep 39:3799–3806
  • Zoran GC, Radmila K, Marijana P (1982) The role of photophosphorylation in SO2 and SO3 2- inhibition of photosynthesis in isolated chloroplasts. Planta 156:249–254

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a19f71d5-7c37-43a9-8ec1-4eac6855406f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.