PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 12 | 2 |

Tytuł artykułu

Telomeropathies: rare disease syndromes

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Telomeres are located at the end of the chromosomes. They protect chromosomes from fusion and degradation. Every cell division causes a shortening of the telomeres. A special enzymatic complex called telomerase is responsible for maintaining telomere length in intensively dividing cells, such as epithelial cells and bone marrow cells. The enzymatic complex includes the TERT subunit, which has reverse transcriptase activity, and the TERC subunit, which acts as a template. Other important components of telomerase are the proteins that are responsible for structural stability. Telomerase remains active only in the dividing cells of the body. The rate of telomere shortening depends on many factors including age, sex, and comorbidities. Faster shortening of telomeres is caused by gene defects, which have an impact on telomerase action. Collectively, these are called telomeropathies. Common causes of telomeropathies are mutations in the TERT and TERC telomerase genes. Types of telemeropathies include dyskeratosis congenita, idiopathic pulmonary fibrosis, and aplastic anaemia, among others. Clinical manifestations and prognoses depend on the type and quantity of mutated genes. Diagnosis of telomeropathies is often problematic because they present with the same symptoms as other diseases. So far, no effective therapeutic methods have been developed for telomeropathies. A therapeutic method for patients with bone marrow failure may be the transplantation of hematopoietic stem cells. For patients with idiopathic pulmonary fibrosis, treatments include immunosuppressive therapy, lung transplantation, or palliative care. In the future, gene therapy may be an effective treatment strategy for telomeropathies. Lifestyle changes may also have a positive impact on the person. Physical activity combined with a healthy diet rich in antioxidants and unsaturated fatty acids can decrease the oxidative stress levels in cells and lead to a slower shortening of the telomeres.

Wydawca

-

Rocznik

Tom

12

Numer

2

Opis fizyczny

p.47-50,fig.,ref.

Twórcy

  • Independent Department of Biotechnology and Molecular Biology, Faculty of Natural Sciences and Technology, University of Opole, Kominka 6a, 45-032 Opole, Poland
  • Independent Department of Biotechnology and Molecular Biology, Faculty of Natural Sciences and Technology, University of Opole, Opole, Poland

Bibliografia

  • 1. Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care 2011; 14: 28–34.
  • 2. Buxton JL, Walters RG, Visvikis-Siest S, Meyre D, Froguel P, Blakemore AIF. Childhood obesity is associated with shorter leukocyte telomere length. J Clin Endocrinol Metab 2011; 96: 1500–1505.
  • 3. Willeit P, Willeit J, Brandstatter A, Ehrlenbach S, Mayr A, et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol 2010; 30: 1649–1656.
  • 4. Gertler R, Doll D, Maak M, Feith M, Rosenberg R. Telomere length and telomerase subunits as diagnostic and prognostic biomarkers in Barrett carcinoma. Cancer 2008; 112: 2173–2180.
  • 5. Holohan B, Wright WE, Shay JW. Telomeropathies: an emerging spectrum disorder. J Cell Biol 2014; 205: 289–299.
  • 6. Bryś M, Laskowska M, Forma E, Krześlak A. Telomeraza – struktura i funkcja oraz regulacja ekspresji genu. Folia Medica Lodziensia 2012, 39: 293–326. (in Polish).
  • 7. Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 1998; 19: 32–38.
  • 8. Vulliamy TJ, Marrone A, Knight SW, Walne A, Mason PJ, et al. Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood 2006 Apr 1; 107(7): 2680–2685.
  • 9. Dokal I. Dyskeratosis congenita in all its forms. Br J Haematol 2000; 110: 768–779.
  • 10. Fernández García MS, Teruya-Feldstein J. The diagnosis and treatment of dyskeratosis congenita: a review. J Blood Med 2014; 5: 157–167.
  • 11. Rackley S, Pao M, Seratti GF, Giri N, Rasimas JJ , et al. Neuropsychiatric conditions among patients with dyskeratosis congenita: a link with telomere biology? Psychosomatics 2012; 53: 230–235.
  • 12. Pignolo RJ, Suda RK, McMillan EA, Shen J, Lee SH, et al. Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell 2008; 7: 23–31.
  • 13. Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in dyskeratosis congenita. Blood 2009; 113: 6549–6557.
  • 14. Savage SA, Alter BP. Dyskeratosis congenita. Hematol Oncol Clin North Am 2009; 23: 215–231.
  • 15. Savage SA, Bertuch AA . The genetics and clinical manifestations of telomere biology disorders. Genet Med 2010; 12: 753–764.
  • 16. Lai W, Deng WP, Liu X, Chen HM, Dai Sh X. A recurrent p. A353V mutation in DKC1 responsible for different phenotypes of dyskeratosis congenita in a Chinese family. J Dermatol Sci 2011; 63: 122–124.
  • 17. Perona R, Iarriccio L, Pintado-Berninches L, Rodriguez-Centeno J, Manguan-Garcia C, et al. Molecular diagnosis and precision therapeutic approaches for telomere biology disorders [online] 2016 Nov: 77–116 [cit. 1.12.2017]. Available from URL: https://www.intechopen.com/books/telomere-a-complexend-of-a-chromosome/molecular-diagnosis-and-precisiontherapeutic-approaches-for-telomere-biology-disorders.
  • 18. Revesz T, Fletcher S, al-Gazali LI , DeBuse P. Bilateral retinopathy, aplastic anaemia, and central nervous system abnormalities: a new syndrome? J Med Genet 1992; 29: 673–675.
  • 19. Walne AJ, Vulliamy T, Beswick R, Kirwan M, Dokal I. TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenital and related bone marrow failure syndromes. Blood 2008; 112: 3594–600.
  • 20. Townsley DM, Dumitriu B, Young NS. Bone marrow failure and the telomeropathies. Blood 2014; 124: 2775–2783.
  • 21. Polvi A, Linnankivi T, Kivela T, Herva R, Keating JP, et al. Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts. Am J Hum Genet 2012; 90: 540–549.
  • 22. Montané E., Ibáñez L., Vidal X, et al. Epidemiology of plastic anemia: a prospective multicenter study. Haematologica 2008; 93: 518–523.
  • 23. Scheinberg P, Cooper JN, Sloand EM, Wu CO, Calado RT, et al. Association of telomere length of peripheral blood leukocytes with hematopoietic relapse, malignant transformation, and survival in severe aplastic anemia. JAMA 2010; 304: 1358–1364.
  • 24. Ziora D. Zaostrzenia samoistnego włóknienia płuc (IPF) Pneumonol Alergol Pol 2006; 74: 403–408.
  • 25. Kuś J. Zwykłe śródmiąższowe zapalenie płuc, czyli samoistne włóknienie płuc. Post Nauk Med 2011; 4: 260–266.
  • 26. Bär C, Povedano JM, Serrano R, Benitez-Buelga C, Popkes M, et al. Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia. Blood 2016; 127(7): 1770–1779.
  • 27. Werner C, Fürster T, Widmann T, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009; 120: 2438–2447.
  • 28. Astuti Y, Wardhana A, Watkins J, Wulaningsih W. A systematic review of 84 studies and meta-analysis. Environ Res 2017; 158: 480–489.
  • 29. Mundstock E, Sarria EE, Zatti H, Mattos Louzada F, Kich Grun L, et al. Effect of obesity on telomere length: Systematic review and meta-analysis. Obesity (Silver Spring) 2015; 23: 2165–2174.
  • 30. Zhou Y, Hambly BD, McLachlan CS. FTO associations with obesity and telomere length. J Biomed Sci 2017; 24: 65.
  • 31. Wang H, Kim H, Baik I. Associations of alcohol consumption and alcohol flush reaction with leukocyte telomere length in Korean adults. Nutr Res Pract 2017; 11: 334–339.
  • 32. Boccardi V, Esposito A, Rizzo MR, Marfella R, Barbieri M, et al. Mediterranean diet, telomere maintenance and health status among elderly. PLoS ONE 2013; 8: e62781.
  • 33. García-Calzón S, Martínez-González MA, Razquin C, Arós F, Lapetra J, et al. Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin Nutr 2016; 35: 1399–1405.
  • 34. Laimer M, Melmer A, Lamina C, Raschenberger J, Adamovski P, et al. Telomere length increase after weight loss induced by bariatric surgery: results from a 10 year prospective study. Int J Obes (Lond) 2016; 40: 773–778.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a173710a-8f3b-4b00-85ed-b76fe34a7311
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.